3,006 research outputs found
Efficient coupling into slow light photonic crystal waveguide without transition region: Role of evanescent modes
We show that efficient coupling between fast and slow photonic crystal waveguide modes is possible, provided that there exist strong evanescent modes to match the waveguide fields across the interface. Evanescent modes are required when the propagating modes have substantially different modal fields, which occurs, for example, when coupling an index-guided mode and a gap-guided mode. ©2009 Optical Society of America
Efficient slow-light coupling in a photonic crystal waveguide without transition region
We consider the coupling into a slow mode that appears near an inflection point in the band structure of a photonic crystal waveguide. Remarkably, the coupling into this slow mode, which has a group index ng > 1000, can be essentially perfect without any transition region. We show that this efficient coupling occurs thanks to an evanescent mode in the slow medium, which has appreciable amplitude and helps satisfy the boundary conditions but does not transport any energy. © 2008 Optical Society of America
Symmetry and degeneracy in microstructured optical fibers
The symmetry of an optical waveguide determines its modal degeneracies. A fiber with rotational symmetry of order higher than 2 has modes that either are nondegenerate and support the complete fiber symmetry or are twofold degenerate pairs of lower symmetry. The latter case applies to the fundamental modes of perfect microstructured optical fibers, guaranteeing that such fibers are not birefringent. We explore two numerical methods and demonstrate their agreement with these symmetry constraints. © 2001 Optical Society of America
Confinement losses in microstructured optical fibers
We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of holes, and wavelength, and give the minimum number of rings of holes required for a specific loss for given parameters. © 2001 Optical Society of America
The Parameterized Complexity of Centrality Improvement in Networks
The centrality of a vertex v in a network intuitively captures how important
v is for communication in the network. The task of improving the centrality of
a vertex has many applications, as a higher centrality often implies a larger
impact on the network or less transportation or administration cost. In this
work we study the parameterized complexity of the NP-complete problems
Closeness Improvement and Betweenness Improvement in which we ask to improve a
given vertex' closeness or betweenness centrality by a given amount through
adding a given number of edges to the network. Herein, the closeness of a
vertex v sums the multiplicative inverses of distances of other vertices to v
and the betweenness sums for each pair of vertices the fraction of shortest
paths going through v. Unfortunately, for the natural parameter "number of
edges to add" we obtain hardness results, even in rather restricted cases. On
the positive side, we also give an island of tractability for the parameter
measuring the vertex deletion distance to cluster graphs
Calculations of air-guided modes in photonic crystal fibers using the multipole method
We demonstrate that a combination of multipole and Bloch methods is well suited for calculating the modes of air core photonic crystal fibers. This includes determining the reflective properties of the cladding, which is a prerequisite for the modal calculations. We demonstrate that in the presence of absorption, the modal losses can be substantially smaller than in the corresponding bulk medium. © 2001 Optical Society of America
Supermassive black holes do not correlate with dark matter halos of galaxies
Supermassive black holes have been detected in all galaxies that contain
bulge components when the galaxies observed were close enough so that the
searches were feasible. Together with the observation that bigger black holes
live in bigger bulges, this has led to the belief that black hole growth and
bulge formation regulate each other. That is, black holes and bulges
"coevolve". Therefore, reports of a similar correlation between black holes and
the dark matter halos in which visible galaxies are embedded have profound
implications. Dark matter is likely to be nonbaryonic, so these reports suggest
that unknown, exotic physics controls black hole growth. Here we show - based
in part on recent measurements of bulgeless galaxies - that there is almost no
correlation between dark matter and parameters that measure black holes unless
the galaxy also contains a bulge. We conclude that black holes do not correlate
directly with dark matter. They do not correlate with galaxy disks, either.
Therefore black holes coevolve only with bulges. This simplifies the puzzle of
their coevolution by focusing attention on purely baryonic processes in the
galaxy mergers that make bulges.Comment: 12 pages, 9 Postscript figures, 1 table; published in Nature (20
January 2011
Recommended from our members
An investigation of a quantum probability model for the constructive effect of affective evaluation
The idea that choices can have a constructive effect has received a great deal of empirical support. The act of choosing appears to influence subsequent preferences for the options available. Recent research has proposed a cognitive model based on quantum probability, which suggests that whether or not a participant provides an affective evaluation for a positively or negatively valenced stimulus can also be constructive and so e.g. influence the affective evaluation of a second oppositely valenced stimulus. However, there are some outstanding methodological questions in relation to this previous research. This paper reports the results of three experiments designed to resolve these questions. Experiment 1, using a binary response format, provides partial support for the interaction predicted by the quantum probability model and Experiment 2, which controls for the length of time participants have to respond, fully supports the quantum probability model. Finally, Experiment 3 sought to determine whether the key effect can generalize beyond affective judgements about visual stimuli. Using judgements about the trustworthiness of well-known people, the predictions of the quantum probability model were confirmed. Together these three experiments provide further support for the quantum probability model of the constructive effect of simple evaluations
Science Models as Value-Added Services for Scholarly Information Systems
The paper introduces scholarly Information Retrieval (IR) as a further
dimension that should be considered in the science modeling debate. The IR use
case is seen as a validation model of the adequacy of science models in
representing and predicting structure and dynamics in science. Particular
conceptualizations of scholarly activity and structures in science are used as
value-added search services to improve retrieval quality: a co-word model
depicting the cognitive structure of a field (used for query expansion), the
Bradford law of information concentration, and a model of co-authorship
networks (both used for re-ranking search results). An evaluation of the
retrieval quality when science model driven services are used turned out that
the models proposed actually provide beneficial effects to retrieval quality.
From an IR perspective, the models studied are therefore verified as expressive
conceptualizations of central phenomena in science. Thus, it could be shown
that the IR perspective can significantly contribute to a better understanding
of scholarly structures and activities.Comment: 26 pages, to appear in Scientometric
- …