7,074 research outputs found
Anomaly Detection in Paleoclimate Records using Permutation Entropy
Permutation entropy techniques can be useful in identifying anomalies in
paleoclimate data records, including noise, outliers, and post-processing
issues. We demonstrate this using weighted and unweighted permutation entropy
of water-isotope records in a deep polar ice core. In one region of these
isotope records, our previous calculations revealed an abrupt change in the
complexity of the traces: specifically, in the amount of new information that
appeared at every time step. We conjectured that this effect was due to noise
introduced by an older laboratory instrument. In this paper, we validate that
conjecture by re-analyzing a section of the ice core using a more-advanced
version of the laboratory instrument. The anomalous noise levels are absent
from the permutation entropy traces of the new data. In other sections of the
core, we show that permutation entropy techniques can be used to identify
anomalies in the raw data that are not associated with climatic or
glaciological processes, but rather effects occurring during field work,
laboratory analysis, or data post-processing. These examples make it clear that
permutation entropy is a useful forensic tool for identifying sections of data
that require targeted re-analysis---and can even be useful in guiding that
analysis.Comment: 15 pages, 7 figure
Infrared Surface Brightness Fluctuations of the Coma Elliptical NGC 4874 and the Value of the Hubble Constant
We have used the Keck I Telescope to measure K-band surface brightness
fluctuations (SBFs) of NGC 4874, the dominant elliptical galaxy in the Coma
cluster. We use deep HST WFPC2 optical imaging to account for the contamination
due to faint globular clusters and improved analysis techniques to derive
measurements of the SBF apparent magnitude. Using a new SBF calibration which
accounts for the dependence of K-band SBFs on the integrated color of the
stellar population, we measure a distance modulus of 34.99+/-0.21 mag (100+/-10
Mpc) for the Coma cluster. The resulting value of the Hubble constant is 71+/-8
km/s/Mpc, not including any systematic error in the HST Cepheid distance scale.Comment: ApJ Letters, in press. Uses emulateapj5.st
Qudit Quantum State Tomography
Recently quantum tomography has been proposed as a fundamental tool for
prototyping a few qubit quantum device. It allows the complete reconstruction
of the state produced from a given input into the device. From this
reconstructed density matrix, relevant quantum information quantities such as
the degree of entanglement and entropy can be calculated. Generally orthogonal
measurements have been discussed for this tomographic reconstruction. In this
paper, we extend the tomographic reconstruction technique to two new regimes.
First we show how non-orthogonal measurement allow the reconstruction of the
state of the system provided the measurements span the Hilbert space. We then
detail how quantum state tomography can be performed for multi qudits with a
specific example illustrating how to achieve this in one and two qutrit
systems.Comment: 6 pages, 4 figures, submitted to PR
Multi-Element Regulation of the Tropical Forest Carbon Cycle
Tropical ecosystems dominate the exchange of carbon dioxide between the atmosphere and terrestrial biosphere, yet our understanding of how nutrients control the tropical carbon (C) cycle remains far from complete. In part, this knowledge gap arises from the marked complexity of the tropical forest biome, in which nitrogen, phosphorus, and perhaps several other elements may play roles in determining rates of C gain and loss. As studies from other ecosystems show, failing to account for nutrientâC interactions can lead to substantial errors in predicting how ecosystems will respond to climate and other environmental changes. Thus, although resolving the complex nature of tropical forest nutrient limitation â and then incorporating such knowledge into predictive models â will be difficult, it is a challenge that the global change community must address
The Regulation of Skeletal Muscle Protein Turnover During the Progression of Cancer Cachexia in the \u3cem\u3eApc\u3csup\u3eMin/+\u3c/sup\u3e\u3c/em\u3e Mouse
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (â€5%), intermediate (6-19%), or extreme (â„20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further âŒ50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process
Observation of Parity Violation in the Omega-minus -> Lambda + K-minus Decay
The alpha decay parameter in the process Omega-minus -> Lambda + K-minus has
been measured from a sample of 4.50 million unpolarized Omega-minus decays
recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 +/-
0.19(stat) +/- 0.16(syst)]{\times}10^{-2}. This is the first unambiguous
evidence for a nonzero alpha decay parameter, and hence parity violation, in
the Omega-minus -> Lambda + K-minus decay.Comment: 10 pages, 7 figure
Search for the Lepton-Number-Violating Decay
A sensitive search for the lepton-number-violating decay has been performed using a sample of hyperons
produced in 800 GeV/ -Cu collisions. We obtain at 90% confidence, improving on the best
previous limit by four orders of magnitude.Comment: 9 pages, 5 figures, to be published in Phys. Rev. Let
- âŠ