1,992 research outputs found

    First Structure Formation: A Simulation of Small Scale Structure at High Redshift

    Get PDF
    We describe the results of a simulation of collisionless cold dark matter in a LambdaCDM universe to examine the properties of objects collapsing at high redshift (z=10). We analyze the halos that form at these early times in this simulation and find that the results are similar to those of simulations of large scale structure formation at low redshift. In particular, we consider halo properties such as the mass function, density profile, halo shape, spin parameter, and angular momentum alignment with the minor axis. By understanding the properties of small scale structure formation at high redshift, we can better understand the nature of the first structures in the universe, such as Population III stars.Comment: 31 pages, 14 figures; accepted for publication in ApJ. Figure 1 can also be viewed at http://cfa-www.harvard.edu/~hjang/research

    Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP3/Ca2+ and cAMP-dependent signaling mechanisms

    Get PDF
    Although large cholangiocytes exert their functions by activation of cyclic adenosine 3',5'-monophosphate (cAMP), Ca(2+)-dependent signaling regulates the function of small cholangiocytes. Histamine interacts with four receptors, H1-H4HRs. H1HR acts by Gαq activating IP(3)/Ca(2+), whereas H2HR activates Gα(s) stimulating cAMP. We hypothesize that histamine increases biliary growth by activating H1HR on small and H2HR on large cholangiocytes. The expression of H1-H4HRs was evaluated in liver sections, isolated and cultured (normal rat intrahepatic cholangiocyte culture (NRIC)) cholangiocytes. In vivo, normal rats were treated with histamine or H1-H4HR agonists for 1 week. We evaluated: (1) intrahepatic bile duct mass (IBDM); (2) the effects of histamine, H1HR or H2HR agonists on NRIC proliferation, IP(3) and cAMP levels and PKCα and protein kinase A (PKA) phosphorylation; and (3) PKCα silencing on H1HR-stimulated NRIC proliferation. Small and large cholangiocytes express H1-H4HRs. Histamine and the H1HR agonist increased small IBDM, whereas histamine and the H2HR agonist increased large IBDM. H1HR agonists stimulated IP(3) levels, as well as PKCα phosphorylation and NRIC proliferation, whereas H2HR agonists increased cAMP levels, as well as PKA phosphorylation and NRIC proliferation. The H1HR agonist did not increase proliferation in PKCα siRNA-transfected NRICs. The activation of differential signaling mechanisms targeting small and large cholangiocytes is important for repopulation of the biliary epithelium during pathologies affecting different-sized bile ducts

    Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop

    Get PDF
    <p><b>Aims:</b> A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density.</p> <p><b>Methods:</b> Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution (~0.2'') for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with an unprecedented vertical resolution of ~150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km.</p> <p><b>Results:</b> Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around 140 30 km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of magnetic flux tubes in the chromosphere with height. The magnetic scale height B(z)(dB/dz)-1 is found to be of the order of 300 km and a strong horizontal magnetic field is associated with noticeable flux tube expansion at a height of ~900 km.</p&gt

    Applying species distribution modelling to a data poor, pelagic fish complex: the ocean sunfishes

    Get PDF
    Aim: Conservation management of vulnerable species requires detailed knowledge of their spatial and temporal distribution patterns. Within this context, species distribution modelling (SDM) can provide insights into the spatial ecology of rarely encountered species and is used here to explore the distribution pattern of ocean sunfishes(Mola mola and M. ramsayi). Both species are prone to high levels of by catch and are classified respectively as Globally Vulnerable and Not Assessed by the IUCN; although their overall range and drivers of distribution remain poorly defined. Here, we constructed suitable habitat models for Mola spp. on a global scale and considered how these change seasonally to provide a much needed baseline for future management.Location: Global. Methods: Sighting records collected between 2000 and 2015 were used to build SDMs and provided the first global overview of sunfish seasonal distribution. Posthoc analyses provided a quantitative assessment of seasonal changes in total range extent and latitudinal shifts in suitable habitat.Results: Mola is a widely distributed genus; however, sightings exhibited significant spatial clustering most notably in coastal regions. SDMs suggested that Mola presence was strongly dependent on sea surface temperatures with highest probability of presence between 16 and 23°C. The models identified significant variation in seasonal range extent with latitudinal shifts throughout the year; although large areas of suitable year-round habitat exist globally.Main conclusions: We provided the first assessment of Mola distribution on a global scale, with evidence of a wide latitudinal range and significant clustering in localized“hotspots” (notably between 40–50°N). By assessing the results of SDMs alongside evidence from published satellite tagging studies, we suggest that the species within the genus Mola are highly mobile, acting as facultative seasonal migrants. By identifying key suitable habitat alongside potential movement paths, this study provides a baseline that can be used in active conservation management of the genus

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe
    corecore