2 research outputs found
Recommended from our members
Regulation of splicing networks in neurodevelopment
Alternative splicing of pre-mRNA is a critical mechanism for enabling genetic diversity, and is a carefully regulated process in neuronal differentiation. RNA binding proteins (RBPs) are developmentally expressed and physically interact with RNA to drive specific splicing changes. This work tests the hypothesis that RBP-RNA interactions are critical for regulating timed and coordinated alternative splicing changes during neurodevelopment and that these splicing changes are in turn part of major regulatory mechanisms that underlie morphological and functional maturation of neurons. I describe our efforts to identify functional RBP-RNA interactions, including the identification of previously unobserved splicing events, and explore the combinatorial roles of multiple brain-specific RBPs during development. Using integrative modeling that combines multiple sources of data, we find hundreds of regulated splicing events for each of RBFOX, NOVA, PTBP, and MBNL. In the neurodevelopmental context, we find that the proteins control different sets of exons, with RBFOX, NOVA, and PTBP regulating early splicing changes and MBNL largely regulating later splicing changes. These findings additionally led to the observation that CNS and sensory neurons express a variety of different RBP programs, with many sensory neurons expressing a less mature splicing pattern than CNS neurons. We also establish a foundation for further exploration of neurodevelopmental splicing, by investigating the regulation of previously unobserved splicing events
Recommended from our members
Precise temporal regulation of alternative splicing during neural development
Alternative splicing (AS) is one crucial step of gene expression that must be tightly regulated during neurodevelopment. However, the precise timing of developmental splicing switches and the underlying regulatory mechanisms are poorly understood. Here we systematically analyze the temporal regulation of AS in a large number of transcriptome profiles of developing mouse cortices, in vivo purified neuronal subtypes, and neurons differentiated in vitro. Our analysis reveals early-switch and late-switch exons in genes with distinct functions, and these switches accurately define neuronal maturation stages. Integrative modeling suggests that these switches are under direct and combinatorial regulation by distinct sets of neuronal RNA-binding proteins including Nova, Rbfox, Mbnl, and Ptbp. Surprisingly, various neuronal subtypes in the sensory systems lack Nova and/or Rbfox expression. These neurons retain the “immature” splicing program in early-switch exons, affecting numerous synaptic genes. These results provide new insights into the organization and regulation of the neurodevelopmental transcriptome