49 research outputs found

    The effect of a single-session heart rate variability biofeedback on attentional control: does stress matter?

    Get PDF
    IntroductionVagally mediated heart rate variability is an index of autonomic nervous system activity that is associated with a large variety of outcome variables including psychopathology and self-regulation. While practicing heart rate variability biofeedback over several weeks has been reliably associated with a number of positive outcomes, its acute effects are not well known. As the strongest association with vagally mediated heart rate variability has been found particularly within the attention-related subdomain of self-regulation, we investigated the acute effect of heart rate variability biofeedback on attentional control using the revised Attention Network Test.MethodsFifty-six participants were tested in two sessions. In one session each participant received a heart rate variability biofeedback intervention, and in the other session a control intervention of paced breathing at a normal ventilation rate. After the biofeedback or control intervention, participants completed the Attention Network Test using the Orienting Score as a measure of attentional control.ResultsMixed models revealed that higher resting baseline vagally mediated heart rate variability was associated with better performance in attentional control, which suggests more efficient direction of attention to target stimuli. There was no significant main effect of the intervention on attentional control. However, an interaction effect indicated better performance in attentional control after biofeedback in individuals who reported higher current stress levels.DiscussionThe results point to acute beneficial effects of heart rate variability biofeedback on cognitive performance in highly stressed individuals. Although promising, the results need to be replicated in larger or more targeted samples in order to reach stronger conclusions about the effects

    Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory

    Get PDF
    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300–500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400–700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180–220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional—particularly unpleasant—backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.This research was supported by a grant from the German Research Foundation (DFG, WE 4801/3-1) to Mathias Weymar at the University of Greifswald. Carlos Ventura-Bort (E-2013-15) was supported by the program for international stays of the Universitat Jaume I of Castellón, Spain

    Oral Contraceptives Impair Complex Emotion Recognition in Healthy Women

    Get PDF
    Despite the widespread use of oral contraceptives (OCs), remarkably little is known about the effects of OCs on emotion, cognition, and behavior. However, coincidental findings suggest that OCs impair the ability to recognize others’ emotional expressions, which may have serious consequences in interpersonal contexts. To further investigate the effects of OCs on emotion recognition, we tested whether women who were using OCs (n = 42) would be less accurate in the recognition of complex emotional expressions than women who were not using OCs (n = 53). In addition, we explored whether these differences in emotion recognition would depend on women’s menstrual cycle phase. We found that women with OC use were indeed less accurate in the recognition of complex expressions than women without OC use, in particular during the processing of expressions that were difficult to recognize. These differences in emotion recognition did not depend on women’s menstrual cycle phase. Our findings, thus, suggest that OCs impair women’s emotion recognition, which should be taken into account when informing women about the side-effects of OC use

    Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis.

    Get PDF
    BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    Cortical thickness and resting-state cardiac function across the lifespan: a cross-sectional pooled mega analysis

    Get PDF
    Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS – or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between cortical thickness and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research

    Transcutaneous auricular vagus nerve stimulation modulates the processing of interoceptive prediction error signals and their role in allostatic regulation.

    No full text
    According to the predictive coding theory, the brain continuously generates predictions about upcoming environmental and internal body states. These predictions are compared with actual inputs and when they mismatch (i.e., prediction errors) the organism aims at reducing this discrepancy to guarantee a proper adaptation. These predictive principles may also apply to interoception, which encompasses the processing of hormonal, autonomic, visceral and immunological signals. In the current study, we aimed at to providing empirical evidence for the role of interoceptive prediction errors signals on allostatic adjustments, using transcutaneous auricular vagus nerve stimulation (taVNS) as a proxy to modulate the precision of interoceptive afferences. In a two-session, cross-over, within-subject design, participants performed a cardiac-related interoceptive (and control) task under taVNS or sham stimulation. We observed that taVNS, in contrast to sham stimulation, facilitated the maintenance of interoceptive accuracy levels over time, suggesting that vagus nerve stimulation increased the precision of cardiac afferent signals. In line, during the interoceptive task, taVNS compared to sham, increased heart-evoked potentials (HEP) amplitudes, a correlate of cardiac-related prediction error processing. . Further analyses revealed that the positive relation between interoceptive accuracy and HEP amplitudes during taVNS mediated the association between HEP and allostatic adjustments as measured by heart-rate variability (HRV). Validating predictive processing accounts of interoception, our results indicate that the processing of interoceptive prediction error signals modulates allostatic adjustments, as a function of interoceptive accuracy, particularly when the precision of afferent signals is promoted by non-invasive vagus nerve stimulation
    corecore