116 research outputs found

    Hydrogeological controls on regional-scale indirect nitrous oxide (N2O) emission factors for rivers

    Get PDF
    Indirect nitrous oxide (N2O) emissions from rivers are currently derived using poorly constrained default IPCC emission factors (EF5r) which yield unreliable flux estimates. Here, we demonstrate how hydrogeological conditions can be used to develop more refined regional-scale EF5r estimates required for compiling accurate national greenhouse gas inventories. Focusing on three UK river catchments with contrasting bedrock and superficial geologies, N2O and nitrate (NO3-) concentrations were analyzed in 651 river water samples collected from 2011 to 2013. Unconfined Cretaceous Chalk bedrock regions yielded the highest median N2O-N concentration (3.0 μg L-1), EF5r (0.00036) and N2O-N flux (10.8 kg ha-1 a-1). Conversely, regions of bedrock confined by glacial deposits yielded significantly lower median N2O-N concentration (0.8 μg L-1), EF5r (0.00016) and N2O-N flux (2.6 kg ha-1 a-1), regardless of bedrock type. Bedrock permeability is an important control in regions where groundwater is unconfined, with a high N2O yield from high permeability Chalk contrasting with significantly lower median N2O-N concentration (0.7 μg L-1), EF5r (0.00020) and N2O-N flux (2.0 kg ha-1 a-1) on lower permeability unconfined Jurassic mudstone. The evidence presented here demonstrates EF5r can be differentiated by hydrogeological conditions and thus provide a valuable proxy for generating improved regional-scale N2O emission estimates

    Incidence of adult Huntington's disease in the UK: a UK-based primary care study and a systematic review.

    Get PDF
    OBJECTIVES: The prevalence of Huntington's disease (HD) recorded in the UK primary care records has increased twofold between 1990 and 2010. This investigation was undertaken to assess whether this might be due to an increased incidence. We have also undertaken a systematic review of published estimates of the incidence of HD. SETTING: Incident patients with a new diagnosis of HD were identified from the primary care records of the Clinical Practice Research Datalink (CPRD). The systematic review included all published estimates of the incidence of HD in defined populations. PARTICIPANTS: A total of 393 incident cases of HD were identified from the CPRD database between 1990 and 2010 from a total population of 9,282,126 persons. PRIMARY AND SECONDARY OUTCOME MEASURES: The incidence of HD per million person-years was estimated. From the systematic review, the extent of heterogeneity of published estimates of the incidence of HD was examined using the I(2) statistic. RESULTS: The data showed that the incidence of HD has remained constant between 1990 and 2010 with an overall rate of 7.2 (95% CI 6.5 to 7.9) per million person-years. The systematic review identified 14 independent estimates of incidence with substantial heterogeneity and consistently lower rates reported in studies from East Asia compared with those from Australia, North America and some--though not all--those from Europe. Differences in incidence estimates did not appear to be explained solely by differences in case ascertainment or diagnostic methods. CONCLUSIONS: The rise in the prevalence of diagnosed HD in the UK, between 1990 and 2010, cannot be attributed to an increase in incidence. Globally, estimates of the incidence of HD show evidence of substantial heterogeneity with consistently lower rates in East Asia and parts of Europe. Modifiers may play an important role in determining the vulnerability of different populations to expansions of the HD allele

    Opening opportunities for high-resolution isotope analysis - Quantification of δ15NNO3 and δ18ONO3 in diffusive equilibrium in thin–film passive samplers

    Get PDF
    The fate of nitrate transported across groundwater-surface water interfaces has been intensively studied in recent decades. The interfaces between aquifers and rivers or lakes have been identified as biogeochemical hotspots with steep redox gradients. However, a detailed understanding of the spatial heterogeneity and potential temporal variability of these hotspots, and the consequences for nitrogen processing, is still hindered by a paucity of adequate measurement techniques. A novel methodology is presented here, using Diffusive Equilibrium in Thin-film (DET) gels as high-spatial-resolution passive-samplers of δ15NNO3 and δ18ONO3 to investigate nitrogen cycling. Fractionation of δ15NNO3 and δ18ONO3 during diffusion of nitrate through the DET gel was determined using varying equilibrium times and nitrate concentrations. This demonstrated that nitrate isotopes of δ15NNO3 and δ18ONO3 do not fractionate when sampled with a DET gel. δ15NNO3 values from the DET gels ranged between 2.3 ± 0.2 and 2.7 ± 0.3‰ for a NO3– stock solution value of 2.7 ± 0.4‰, and δ18ONO3 values ranged between 18.3 ± 1.0 and 21.5 ± 0.8‰ for a NO3– stock solution of 19.7 ± 0.9‰. Nitrate recovery and isotope values were independent of equilibrium time and nitrate concentration. Additionally, an in situ study showed that nitrate concentration and isotopes provide unique, high-resolution data that enable improved understanding of nitrogen cycling in freshwater sediments

    Anemia in Children with Down Syndrome

    Get PDF
    Background. Iron deficiency anemia impacts on cognitive development. The objective of this study was to determine the prevalence of anemia and iron deficiency in children with Down syndrome and identify risk factors for anemia. Methods. We conducted a prolective cross-sectional study of children attending a multidisciplinary Down syndrome medical center. One hundred and forty nine children with Down syndrome aged 0–20 years were enrolled in the study. Information obtained included a medical history, physical and developmental examination, nutritional assessment, and the results of blood tests. Results. Of the patients studied, 8.1% were found to have anemia. Among the 38 children who had iron studies, 50.0% had iron deficiency. In a multivariate analysis, Arab ethnicity and low weight for age were significantly associated with anemia. Gender, height, the presence of an eating disorder, and congenital heart disease were not risk factors for anemia. Conclusions. Children with Down syndrome are at risk for anemia and iron deficiency similar to the general population. Children with Down syndrome should be monitored for anemia and iron deficiency so that prompt intervention can be initiated

    Seasonal variability of sediment controls of nitrogen cycling in an agricultural stream

    Get PDF
    Agricultural streams receive large inputs of nutrients, such as nitrate (NO3−) and ammonium (NH4+), which impact water quality and stream health. Streambed sediments are hotspots of biogeochemical reactivity, characterised by high rates of nutrient attenuation and denitrification. High concentrations of nitrous oxide (N2O) previously observed in stream sediments point to incomplete denitrification, with sediments acting as a potentially significant source of global N2O. We investigated the effect of sediment type and seasonal variation on denitrification and N2O production in the streambed of an agricultural UK stream. Denitrification was strongly controlled by sediment type, with sand-dominated sediments exhibiting potential rates of denitrification almost 10 times higher than those observed in gravel-dominated sediments (0.026 ± 0.004 N2O–N μg g−1 h−1 for sand-dominated and 0.003 ± 0.003 N2O–N μg g−1 h−1 for gravel-dominated). In-situ measurements supported this finding, with higher concentrations of NO3−, nitrite (NO2−) and N2O observed in the porewaters of gravel-dominated sediments. Denitrification varied substantially between seasons, with denitrification increasing from winter to autumn. Our results indicate highest NO3− reduction occurred in sand-dominated sediments whilst highest N2O concentrations occurred in gravel-dominated sediments. This suggests that finer-grained streambeds could play an important role in removing excess nitrogen from agricultural catchments without producing excess N2O

    Iso-Wetlands: unlocking wetland ecologies and agriculture in prehistory through sulfur isotopes

    Get PDF
    Iso-Wetlands is a new, NERC-funded collaborative research project involving researchers at UCL Institute of Archaeology, the University of Leeds and the UK Centre for Ecology and Hydrology. The project is developing sulfur isotope analysis of archaeological plants and animals as a new tool for exploring hydrological conditions under which agricultural production was taking place. This development has the potential to improve understanding of water management strategies in the past, particularly in relation to seasonal floodwater agriculture and wetland agriculture (for example, rice paddy systems). The project will open wider possibilities for the use of sulfur isotopes in archaeology and ecology to examine wetland habitat use by both people and animals

    Identifying causes of poor water quality in a Polish agricultural catchment for designing effective and targeted mitigation measures

    Get PDF
    The Gowienica Miedwiańska catchment is a small agricultural catchment located in the NW of Poland draining into Lake Miedwie, on which a drinking water source for the city of Szczecin is located. The catchment is characterized by very rich soils. Subsequently, agriculture is intensive and this is thought to influence the poor water quality in the local area. Despite more than 20 years since first programmes of measures towards protection of water quality have been introduced into the catchment, these have not been produced the expected results, and the local farming community cites other sources such as poor sewage management rather that agricultural activity, as responsible for this problem. Evaluation of flow pathways in the catchment and identification of the areas responsible for the highest impact on local water quality was therefore conducted within the EU funded project Waterprotect. The aim of this study was to clarify sources of pollution precisely in space and time, in order to increase trust from stakeholders, so that targeted measures can be used effectively to improve water quality. The study included water quality monitoring, isotopic analysis and numerical flow modelling. Results showed that water quality in the catchment is spatially and temporally variable. 93% of nitrogen loadings into the Miedwie lake have been attributed to agriculture and only 7% to wastewater inputs. The local hydrology and hydrogeology play an important role in the distribution of the impacts from these inputs. As a result, three sub-catchments were identified which are differentiated by dominant pollution source, land use, and hydraulic characteristics. The highest inputs from agriculture have been identified in the most upper sub-catchment and this area have been pointed out as most suitable for implementation of agricultural best management practices towards protection of water quality at a local level

    Sedimentary carbon on the continental shelf : emerging capabilities and research priorities for Blue Carbon.

    Get PDF
    This work was supported by Cefas internal Seedcorn self-investment funding under the project DP440: Blue carbon within climate mitigation and ecosystem service approaches to natural asset assessments, and by Cefas’ Ecosystem Theme science theme.Continental shelf sediments store large amounts of organic carbon. Protecting this carbon from release back into the marine system and managing the marine environment to maximize its rate of accumulation could both play a role in mitigating against climate change. For these reasons, in the context of an expanding ‘Blue Carbon’ concept, research interest in the quantity and vulnerability of carbon stored in continental shelf, slope, and deep ocean sediments is increasing. In these systems, carbon storage is physically distant from carbon sources, altered between source and sink, and disturbed by anthropogenic activities. The methodological approaches needed to obtain the evidence to assess shelf sea sediment carbon manageability and vulnerability within an evolving blue carbon framework cannot be transferred directly from those applied in coastal vegetated ‘traditional’ blue carbon habitats. We present a ‘toolbox’ of methods which can be applied in marine sediments to provide the evidence needed to establish where and when marine carbon in offshore sediments can contribute to climate mitigation, focusing on continental shelf sediments. These methods are discussed in the context of the marine carbon cycle and how they provide evidence on: (i) stock: how much carbon is there and how is it distributed? (ii) accumulation: how rapidly is carbon being added or removed? and (iii) anthropogenic pressures: is carbon stock and/or accumulation vulnerable to manageable human activities? Our toolbox provides a starting point to inform choice of techniques for future studies alongside consideration of their specific research questions and available resources. Where possible a stepwise approach to analyses should be applied in which initial parameters are analysed to inform which samples, if any, will provide information of interest from more resource-intensive analyses. As studies increasingly address the knowledge gaps around continental shelf carbon stocks and accumulation – through both sampling and modelling – the management of this carbon with respect to human pressures will become the key question for understanding where it fits within the blue carbon framework and within the climate mitigation discourse.Publisher PDFPeer reviewe

    Influence of Pleistocene glacial deposits on the transport of agricultural nitrate in the river Wensum catchment, UK

    Get PDF
    Mitigating NO3− pollution requires an understanding of the hydrological processes controlling contaminant mobilisation and transport, particularly in agricultural catchments underlain by Pleistocene glacial deposits. Focusing on the Wensum catchment in East Anglia, UK, precipitation (n = 20), stream water (n = 50), field drainage (n = 22) and groundwater (n = 84) samples collected between February–March 2011 and April–September 2012 were variously analysed for water stable isotopes (δ2HH2O and δ18OH2O), the dual-isotopes of NO3− (δ15NNO3 and δ18ONO3), groundwater residence time indicators (CFCs and SF6) and hydrochemical parameters. The residence time indicators suggested a component of modern (post-1960) groundwater throughout the sequence of glacial deposits that corresponds with the penetration of agricultural NO3−. Denitrification and lower NO3− concentrations (<8 mg L−1) are observed in the glacial tills, compared with higher NO3− concentrations (<90 mg L−1) observed under more oxidising conditions in the glacial sands and gravels. Storm hydrograph separation for two storms in April and September 2012 using two- and three-component mixing models showed a faster response with field drainage (36–38 %) and baseflow (5–37 %) contributing to the total stream discharge in areas of clay loam soils over glacial tills. In these areas, the dual stable isotopes of NO3− (δ15NNO3 = +11.8 ‰ and δ18ONO3 = +7.1 ‰) indicated a denitrified source of nitrogen from field drainage and groundwater. In comparison, a dampened response and a higher percentage of baseflow (29–80 %) was observed in areas of sandy clay loam soils over glacial sands and gravels. In these areas, mean NO3− isotopic signatures (δ15NNO3 = +7.8 ‰ and δ18ONO3 = +5.0 ‰) indicated a source of nitrified NH4+. In conclusion, understanding hydrological processes in catchments underlain by variable glacial deposits can inform nutrient management plans and cultivation practices to reduce the risk of agricultural NO3− contamination

    Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, while leukaemic cells are protected

    Get PDF
    Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one-third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure
    corecore