46 research outputs found

    Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells.

    Get PDF
    The urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored protein that promotes tissue remodeling, tumor cell adhesion, migration and invasion. uPAR mediates degradation of the extracellular matrix through protease recruitment and enhances cell adhesion, migration and signaling through vitronectin binding and interactions with integrins. Full-length uPAR is released from the cell surface, but the mechanism and significance of uPAR shedding remain obscure. Here we identify transmembrane glycerophosphodiesterase GDE3 as a GPI-specific phospholipase C that cleaves and releases uPAR with consequent loss of function, whereas its homologue GDE2 fails to attack uPAR. GDE3 overexpression depletes uPAR from distinct basolateral membrane domains in breast cancer cells, resulting in a less transformed phenotype, it slows tumor growth in a xenograft model and correlates with prolonged survival in patients. Our results establish GDE3 as a negative regulator of the uPAR signaling network and, furthermore, highlight GPI-anchor hydrolysis as a cell-intrinsic mechanism to alter cell behavior

    Abcc6 Null Mice-a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging

    Get PDF
    Chronic low back pain is a highly prevalent health condition intricately linked to intervertebral disc degeneration. One of the prominent features of disc degeneration that is commonly observed with aging is dystrophic calcification. ATP-binding cassette sub-family C member 6 (ABCC6), a presumed ATP efflux transporter, is a key regulator of systemic levels of the mineralization inhibitor pyrophosphate (PPi). Mutations in ABCC6 result in pseudoxanthoma elasticum (PXE), a progressive human metabolic disorder characterized by mineralization of the skin and elastic tissues. The implications of ABCC6 loss-of-function on pathological mineralization of structures in the spine, however, are unknown. Using the Abcc6 -/- mouse model of PXE, we investigated age-dependent changes in the vertebral bone and intervertebral disc. Abcc6 -/- mice exhibited diminished trabecular bone quality parameters at 7 months, which remained significantly lower than the wild-type mice at 18 months of age. Abcc6 -/- vertebrae showed increased TRAP staining along with decreased TNAP staining, suggesting an enhanced bone resorption as well as decreased bone formation. Surprisingly, however, loss of ABCC6 resulted only in a mild, aging disc phenotype without evidence of dystrophic mineralization. Finally, we tested the utility of oral K3Citrate to treat the vertebral phenotype since it is shown to regulate hydroxyapatite mechanical behavior. The treatment resulted in inhibition of the osteoclastic response and an early improvement in mechanical properties of the bone underscoring the promise of potassium citrate as a therapeutic agent. Our data suggest that although ectopic mineralization is tightly regulated in the disc, loss of ABCC6 compromises vertebral bone quality and dysregulates osteoblast-osteoclast coupling

    О нижней оценке для одной квадратичной задачи намногообразии Штифеля

    Get PDF
    Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome

    A New Perspective on Intervertebral Disc Calcification-From Bench to Bedside

    Get PDF
    Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies

    Loss of Function Mutation in Ank Causes Aberrant Mineralization and Acquisition of Osteoblast-Like-Phenotype by the Cells of the Intervertebral Disc

    Get PDF
    Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue

    Plasma Inorganic Pyrophosphate Deficiency Links Multiparity to Cardiovascular Disease Risk.

    Get PDF
    Epidemiological studies indicate that elevated alkaline phosphatase activity is associated with increased cardiovascular disease risk. Other epidemiological data demonstrate that mothers giving multiple childbirths (multipara) are also at increased risk of developing late-onset cardiovascular disease. We hypothesized that these two associations stem from a common cause, the insufficient plasma level of the ectopic mineralization inhibitor inorganic pyrophosphate, which is a substrate of alkaline phosphatase. As alkaline phosphatase activity is elevated in pregnancy, we hypothesized that pyrophosphate concentrations decrease gestationally, potentially leading to increased maternal vascular calcification and cardiovascular disease risk in multipara. We investigated plasma pyrophosphate kinetics pre- and postpartum in sheep and at term in humans and demonstrated its shortage in pregnancy, mirroring alkaline phosphatase activity. Next, we tested whether multiparity is associated with increased vascular calcification in pseudoxanthoma elasticum patients, characterized by low intrinsic plasma pyrophosphate levels. We demonstrated that these patients had increased vascular calcification when they give birth multiple times. We propose that transient shortages of pyrophosphate during repeated pregnancies might contribute to vascular calcification and multiparity-associated cardiovascular disease risk threatening hundreds of millions of healthy women worldwide. Future trials are needed to assess if gestational pyrophosphate supplementation might be a suitable prophylactic treatment to mitigate maternal cardiovascular disease risk in multiparous women

    The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals

    Get PDF
    ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling

    The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP

    Get PDF
    The membrane protein ANKH was known to prevent pathological mineralization of joints and was thought to export pyrophosphate (PPi) from cells. This did not explain, however, the presence of ANKH in tissues, such as brain, blood vessels and muscle. We now report that in cultured cells ANKH exports ATP, rather than PPi, and, unexpectedly, also citrate as a prominent metabolite. The extracellular ATP is rapidly converted into PPi, explaining the role of ANKH in preventing ankylosis. Mice lacking functional Ank (Ankank/ank mice) had plasma citrate concentrations that were 65% lower than those detected in wild type control animals. Consequently, citrate excretion via the urine was substantially reduced in Ankank/ank mice. Citrate was even undetectable in the urine of a human patient lacking functional ANKH. The hydroxyapatite of Ankank/ank mice contained dramatically reduced levels of both, citrate and PPi and displayed diminished strength. Our results show that ANKH is a critical contributor to extracellular citrate and PPi homeostasis and profoundly affects bone matrix composition and, consequently, bone quality

    Contactgroep Drinkwater Technologen; het succes van ruim 25 jaar kennis delen

    No full text
    Eind 2014 ontstond de Contactgroep Drinkwater Technologen in Nederland en Vlaanderen uit een fusie tussen de contactgroepen ontharding en filtratie. Technologen van tien Nederlandse en vier Vlaamse waterbedrijven en kennisinstituut KWR delen actief kennis over (drink)watertechnologie

    Does the absence of ABCC6 (multidrug resistance protein 6) in patients with Pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery?

    No full text
    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by a progressive mineralization of connective tissue, resulting in skin, arterial and eye disease. Classical PXE is caused by mutations in the ABCC6 gene, which encodes a member of the ABCC (MRP) family of organic anion transporters. Recent studies on Abcc6(-/-) mice show that the absence of ABCC6 in the liver is crucial for PXE and confirm the "metabolic disease hypothesis" for PXE, which states that tissue calcification is due to the absence of a plasma factor secreted from the basolateral hepatocyte membrane. We propose that this plasma factor is vitamin K (precursor). We propose that vitamin K (precursor) is secreted by ABCC6 from the liver as a glutathione--(or glucuronide)--conjugate and that this supplements the vitamin K need of peripheral tissues that receive insufficient vitamin from the diet, because dietary vitamin K is effectively extracted from blood by the liver. Peripheral tissue vitamin K is needed for the gamma-carboxylation of glutamate residues in proteins known to be required for counteracting calcification of connective tissue throughout the body. Our hypothesis explains the known facts of PXE and also explains why PXE-like symptoms can occur in patients with mutations in the gamma-glutamyl carboxylase gene (encoding the enzyme responsible for protein carboxylase) and in rats treated with vitamin K antagonists. The hypothesis implies that the symptoms of PXE can be prevented or mitigated by providing patients (intravenously) with a form of plasma vitamin K (precursor) that can be used by peripheral tissue
    corecore