6,042 research outputs found

    Thermal detector model for cryogenic composite detectors for the dark matter experiments CRESST and EURECA

    Full text link
    The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) and the EURECA (European Underground Rare Event Calorimeter Array) experiments are direct dark matter search experiments where cryogenic detectors are used to detect spin-independent, coherent WIMP (Weakly Interacting Massive Particle)-nucleon scattering events by means of the recoil energy. The cryogenic detectors use a massive single crystal as absorber which is equipped with a TES (transition edge sensor) for signal read-out. They are operated at mK-temperatures. In order to enable a mass production of these detectors, as needed for the EURECA experiment, a so-called composite detector design (CDD) that allows decoupling of the TES fabrication from the optimization procedure of the absorber single-crystal was developed and studied. To further investigate, understand and optimize the performance of composite detectors a detailed thermal detector model which takes into account the CDD has been developed.Comment: To appear in Journal of Physics: Conference Series; Proceedings of Neutrino 2008, Christchurch, New Zealan

    Design and Development of A Water-Flooded Screw Compressor Packaged Air Supply System

    Get PDF

    Tomographic readout of an opto-mechanical interferometer

    Get PDF
    The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure

    The 8-14-μ Appearance of Venus Before the 1964 Conjunction

    Get PDF
    In an earlier paper (Murray, Wildey, and Westphal 1963) we have described the detailed mapping of the 8-14-μ radiation from Venus using the 200-inch Hale telescope. This paper extends that work over a period of about 7 months from December 15, 1963, to June 6, 1964. Detailed maps for 6 days are presented that show the morphology of the upper-atmosphere brightness temperature and illustrate a number of anomalous features near the cusps. The problem of atmospheric extinction and the derived brightness temperature is discussed
    corecore