511 research outputs found

    Influence of additives on the electrodeposition of zinc from a deep eutectic solvent

    Get PDF
    The effects of nicotinic acid (NA), boric acid (BA) and benzoquinone (BQ) on the electrodeposition of Zn have been studied in a choline chloride (ChCl) ethylene glycol (EG) based deep eutectic solvent (DES), (1ChCl:2 EG), and for the first time a bright zinc coating has been achieved when NA was used. In metal electroplating processes, small-molecule additives are often included in the plating bath to improve properties of coating such as brightness, roughness, thickness, hardness and resistance to corrosion. The effects of additives on the electrodeposition of Zn from aqueous solution have been extensively investigated. However, very few studies have considered the effects of additives on the electrodeposition of Zn from ionic liquids or deep eutectic solvents. The electrochemical properties of the plating liquid have been studied here using cyclic voltammetry, chronocoulometry, chronoamperometry and microgravimetry (EQCM). Redox peak currents decrease when additives were included in the Zn solution and total charge was also reduced in experiments where additives were present. The Zn deposition in the absence of additive is in good agreement with an instantaneous growth mechanism at short experimental time scales (being indeterminate over longer periods), however, this changes to one of a progressive growth mechanism when additives were included in the coating bath. The current efficiency of zinc deposition in the DES without additives was 95%, which was reduced when additives were included. The resultant surface morphologies, thickness, topography, roughness and crystal structure of the Zn coating were revealed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD), demonstrating that those additives serve as effective brighteners that can produce highly uniform and smooth zinc deposits

    Toxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca

    Get PDF
    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC50) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no–observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC50 of 1–2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC50s 2.8–26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC50s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways

    Environmental Modeling and Exposure Assessment of Sediment-Associated Pyrethroids in an Agricultural Watershed

    Get PDF
    Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R2 = 0.536), pyrethroid toxic unit (0.576), and cumulative mortality of Hyalella azteca (0.570). The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50–85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland

    Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields

    Full text link
    [EN] The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography mass spectrometry (GC MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p&#8201;<&#8201;0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations &#8804;57.0 ng g&#8722;1 before plow and &#8804;62.3 ng g&#8722;1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water from WWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.Authors wish to thank INIA for the predoctoral fellowship (R. Aznar) and Spanish Ministry of Economy and Competitiveness RTA2014-00012-C03-01 for financial support and Jonathan Villanueva Martin for his contribution to this work.Aznar, R.; Moreno-Ramón, H.; Albero, B.; Sánchez Brunete, C.; Tadeo, JL. (2016). Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. Journal of Soils and Sediments. 17(5):1503-1513. https://doi.org/10.1007/s11368-016-1417-2S15031513175Albaseer SS, Rao RN, Swamy YV, Mukkanti K (2010) An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A 1217(35):5537–5554Alonso MB, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JPM, Lailson-Brito J, Malm O, Eljarrat E, Barcelo D (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24(4):966–972Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Eco Environ 123(4):247–260Aznar R, Albero B, Sanchez-Brunete C, Miguel E, Tadeo JL (2014) Multiresidue analysis of insecticides and other selected environmental contaminants in poultry manure by gas chromatography/mass spectrometry. J AOAC Int 97(4):978–986Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157European Commission (2002) Review report for the active substance Cyfluthrin, 6843/VI/97-finalEuropean Commission (2004) Review report for the active substance α-Cypermethrin, SANCO/4335/2000-finalEuropean Commission (2005) Review report for the active substance Esfenvalerate, 6846/VI/97-finalFeo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393(3-4):156–162Fojut TL, Palumbo AJ, Tjeerdema RS (2012) Aquatic life water quality criteria derived via the UC Davis method: II. Pyrethroid insecticides. Rev Environ Contam Toxicol 216:51–103Gan J, Lee SJ, Liu WP, Haver DL, KAbashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841Hill IR (1985) Aquatic organisms and pyrethroids. Pestic Sci 27:429–465Huang LM, Thompson A, Zhang GL, Chen LM, Han GZ, Gong ZT (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237:199–210Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–189Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170Mahabali S, Spagnoghe P (2014) Mitigation of two insecticides by wetlands plants: feasibility study for the treatment of agricultural runoff in Suriname (South America). Water Air Soil Pollut 225:1771Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21(1):9–15Maund SJ, Campbell PJ, Giddings JM, Hamer MJ, Henry K, Pilling ED, Warinton JS, Wheeler JR (2012) Ecotoxicology of synthetic pyrethroids. Top Curr Chem 314:137–165Money E, Carter GP, Serre ML (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43(7):1948–1958Moore MT, Cooper CM, Smith S, Jr Cullum RF, Knight SS, Locke MA, Bennett ER (2009) Mitigation of two pyrethroid insecticides in Mississippi Delta constructed wetland. Environ Pollut 157:250–256Moreno-Ramón H, Marqués-Mateu A, Ibáñez-Asensio S, Gisbert JM (2015) Wetland soils under rice management and seawater intrusion: characterization and classification. Spa J Soil Sci 5(2):111–129Nawaz MF, Bourrie G, Trolard F, Mouret JC, Henry P (2013) Effects of agronomic practices on the physico-chemical properties of soil waters in rice culture. Turk J Agric For 37(2):195–202Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland, CAPascual-Aguilar J, Andreu V, Gimeno-Garcia E, Pico Y (2015) Current anthropogenic pressures on agro-ecological protected coastal wetlands. Sci Total Environ 03:190–199Soil Survey Staff (2014a) Soil survey field and laboratory methods manual. Soil survey investigations report no. 51, version 2.0. In: Burt R, Soil Survey Staff (eds). U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, p 407Soil Survey Staff (ed) (2014b) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, p 372Song Y, Kai J, Song X, Zhang W, Li L (2015) Long-term toxic effects of deltamethrin and fenvalerate in soil. J Hazard Mater 289:158–164Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39(24):9778–9784Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32(11):2460–2468Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–110

    Nebuliser therapy in the intensive care unit

    Get PDF
    The relationship between identity, lived experience, sexual practices and the language through which these are conveyed has been widely debated in sexuality literature. For example, ‘coming out’ has famously been conceptualised as a ‘speech act’ (Sedgwick 1990) and as a collective narrative (Plummer 1995), while a growing concern for individuals’ diverse identifications in relations to their sexual and gender practices has produced interesting research focusing on linguistic practices among LGBT-identified individuals (Leap 1995; Kulick 2000; Cameron and Kulick 2006; Farqhar 2000). While an explicit focus on language remains marginal to literature on sexualities (Kulick 2000), issue of language use and translation are seldom explicitly addressed in the growing literature on intersectionality. Yet intersectional perspectives ‘reject the separability of analytical and identity categories’ (McCall 2005:1771), and therefore have an implicit stake in the ‘vernacular’ language of the researched, in the ‘scientific’ language of the researcher and in the relationship of continuity between the two. Drawing on literature within gay and lesbian/queer studies and cross-cultural studies, this chapter revisits debates on sexuality, language and intersectionality. I argue for the importance of giving careful consideration to the language we choose to use as researchers to collectively define the people whose experiences we try to capture. I also propose that language itself can be investigated as a productive way to foreground how individual and collective identifications are discursively constructed, and to unpack the diversity of lived experience. I address intersectional complexity as a methodological issue, where methodology is understood not only as the methods and practicalities of doing research, but more broadly as ‘a coherent set of ideas about the philosophy, methods and data that underlie the research process and the production of knowledge’ (McCall 2005:1774). My points are illustrated with examples drawn from my ethnographic study on ‘lesbian’ identity in urban Russia, interspersed with insights from existing literature. In particular, I aim to show that an explicit focus on language can be a productive way to explore the intersections between the global, the national and the local in cross-cultural research on sexuality, while also addressing issues of positionality and accountability to the communities researched

    Unsupervised Analysis of Classical Biomedical Markers: Robustness and Medical Relevance of Patient Clustering Using Bioinformatics Tools

    Get PDF
    Motivation: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients. However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples. Method: Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set. The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in health/life style traits in the resulting clusters was compared to the clusters generated from the original training set. Results: The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This coul

    Microbial Detoxification of Bifenthrin by a Novel Yeast and Its Potential for Contaminated Soils Treatment

    Get PDF
    Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20–40°C) and pH (5–9). On the basis of response surface methodology (RSM), the optimal degradation conditions were determined to be 32.3°C and pH 7.2. Under these conditions, the yeast completely metabolized bifenthrin (50 mg·L−1) within 8 days. This strain utilized bifenthrin as the sole carbon source for growth as well as co-metabolized it in the presence of glucose, and tolerated concentrations as high as 600 mg·L−1 with a qmax, Ks and Ki of 1.7015 day−1, 86.2259 mg·L−1 and 187.2340 mg·L−1, respectively. The yeast first degraded bifenthrin by hydrolysis of the carboxylester linkage to produce cyclopropanecarboxylic acid and 2-methyl-3-biphenylyl methanol. Subsequently, 2-methyl-3-biphenylyl methanol was further transformed by biphenyl cleavage to form 4-trifluoromethoxy phenol, 2-chloro-6-fluoro benzylalcohol, and 3,5-dimethoxy phenol, resulting in its detoxification. Eventually, no persistent accumulative product was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis. This is the first report of a novel pathway of degradation of bifenthrin by hydrolysis of ester linkage and cleavage of biphenyl in a microorganism. Furthermore, strain ZS-02 degraded a variety of pyrethroids including bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin. In different contaminated soils introduced with strain ZS-02, 65–75% of the 50 mg·kg−1 bifenthrin was eliminated within 10 days, suggesting the yeast could be a promising candidate for remediation of environments affected by bifenthrin. Finally, this is the first described yeast capable of degrading bifenthrin

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    \ua9 2023 Copernicus GmbH. All rights reserved. The waters of Aotearoa New Zealand span over 4.2ĝ€\uafmillionĝ€\uafkm2 of the South Pacific Ocean and harbour a rich diversity of seafloor-Associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-Access database Zenodo under 10.5281/zenodo.7083642 (Stephenson et al., 2022)
    corecore