106 research outputs found
Functional evolution of the trace amine associated receptors in mammals and the loss of TAAR1 in dogs
<p>Abstract</p> <p>Background</p> <p>The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1) is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors.</p> <p>Results</p> <p>Across mammals, avians, and amphibians, the TAAR1 gene is intact and appears to be under strong purifying selection based on rates of amino acid fixation compared to neutral mutations. We have found that in dogs it has become a pseudogene. Our analyses using a comparative genetics approach revealed that the pseudogenization event predated the emergence of the Canini tribe rather than being coincident with canine domestication. By assessing the effects of the TAAR1 agonist β-phenylethylamine on [<sup>3</sup>H]dopamine uptake in canine striatal synaptosomes and comparing the degree and pattern of uptake inhibition to that seen in other mammals, including TAAR1 knockout mice, wild type mice and rhesus monkey, we found that the TAAR1 pseudogenization event resulted in an uncompensated loss of function.</p> <p>Conclusion</p> <p>The gene family has seen expansions among certain mammals, notably rodents, and reductions in others, including primates. By placing the trace amine associated receptors in an evolutionary context we can better understand their function and their potential associations with behavior and neurological disease.</p
Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins
<p>Abstract</p> <p>Background</p> <p>Marmosets are playing an increasingly large and important role in biomedical research. They share genetic, anatomical, and physiological similarities with humans and other primate model species, but their smaller sizes, reproductive efficiency, and amenability to genetic manipulation offer an added practicality. While their unique biology can be exploited to provide insights into disease and function, it is also important that researchers are aware of the differences that exist between marmosets and other species. The New World monkey family Callitrichidae, containing both marmoset and tamarin species, typically produces dizygotic twins that show chimerism in the blood and other cells from the hematopoietic lineage. Recently, a study extended these findings to identify chimerism in many tissues, including somatic tissues from other lineages and germ cells. This has raised the intriguing possibility that chimerism may play an increasingly pervasive role in marmoset biology, ranging from natural behavioral implications to increased variability and complexity in biomedical studies.</p> <p>Results</p> <p>Using a quantitative PCR based methodology, Y-chromosomes can be reliably detected in the females with male fraternal twins allowing for a relative quantification of chimerism levels between individuals and tissues. With this approach in common marmosets (<it>Callithrix jacchus</it>) and cotton-top tamarins (<it>Saguinus oedipus</it>), chimerism was detected across a broad array of tissues. Chimerism levels were significantly higher in tissues primarily derived from the hematopoietic lineage, while they were lower, though still detectable, in tissues with other origins. Interestingly, animals with a characteristic marmoset wasting disease show higher levels of chimerism in those tissues affected. Fibroblast cell lines from chimeric individuals, however, are not found to be chimeric themselves.</p> <p>Conclusion</p> <p>Taken together, the levels of chimerism in tissues of different origins coupled with other lines of evidence suggest that indeed only hematopoietic cell lineages are chimeric in callitrichids. The chimerism detected in other tissues is likely the result of blood or lymphocytic infiltration. Using molecular methods to detect chimerism in a tissue sample seems to have allowed a substantial increase in the ability to detect these minor cell populations.</p
Recommended from our members
Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques
Background: Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results: We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4)-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R), 24 (G24R) and 25 (D25K) of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions: The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection pressures and the env evolutionary changes that influence disease outcome, coreceptor switching and vaccine escape
Frequent Infection of Neurons by SV40 Virus in SIV-Infected Macaque Monkeys with Progressive Multifocal Leukoencephalopathy and Meningoencephalitis
Simian virus 40 (SV40), family Polyomaviridae, in immunocompromised macaques can cause fatal demyelinating central nervous system disease analogous to progressive multifocal leukoencephalopathy caused by John Cunningham (JC) virus in immunocompromised humans. Recently, we have demonstrated that JC virus can infect cerebellar granule cell neurons and cortical pyramidal neurons in immunosuppressed people. To examine whether SV40 neuronal infection occurs spontaneously in immunosuppressed macaques, we analyzed archival brain specimens from 20 simian immunodeficiency virus–infected rhesus with AIDS and 1 cynomolgus post-transplant selected with SV40 brain infection from archival records from 1991 to 2012. In addition to white matter SV40 distribution in classic demyelinating progressive multifocal leukoencephalopathy, some of the 21 monkeys exhibited meningeal, subpial neocortical, and periventricular virus. This distribution pattern corresponded to broader viral tropism with neuronal infection in 14 (66.7%) of 21 cases. In all 14 cases, identified neurons were positive for early SV40 transcript large T antigen, but only 4 of the 14 cases exhibited late viral transcript viral protein 1–positive neurons. SV40-infected neurons were detected in frontal, parietal, occipital, and temporal cortices, hippocampus, thalamus, and brain stem. These observations confirm that spontaneous SV40 neuronal infection occurs in immunosuppressed macaques, which parallels JC virus–neuronal infection in immunosuppressed patients. Neuronal infection may be an important aspect of both SV40 and JC virus neuropathogenesis in their respective hosts
SIV Vpx Is Essential for Macrophage Infection but Not for Development of AIDS
Analysis of rhesus macaques infected with a vpx deletion mutant virus of simian immunodeficiency virus mac239 (SIVΔvpx) demonstrates that Vpx is essential for efficient monocyte/macrophage infection in vivo but is not necessary for development of AIDS. To compare myeloid-lineage cell infection in monkeys infected with SIVΔvpx compared to SIVmac239, we analyzed lymphoid and gastrointestinal tissues from SIVΔvpx-infected rhesus (n = 5), SIVmac239-infected rhesus with SIV encephalitis (7 SIV239E), those without encephalitis (4 SIV239noE), and other SIV mutant viruses with low viral loads (4 SIVΔnef, 2 SIVΔ3). SIV+ macrophages and the percentage of total SIV+ cells that were macrophages in spleen and lymph nodes were significantly lower in rhesus infected with SIVΔvpx (2.2%) compared to those infected with SIV239E (22.7%), SIV239noE (8.2%), and SIV mutant viruses (10.1%). In colon, SIVΔvpx monkeys had fewer SIV+ cells, no SIV+ macrophages, and lower percentage of SIV+ cells that were macrophages than the other 3 groups. Only 2 SIVΔvpx monkeys exhibited detectable virus in the colon. We demonstrate that Vpx is essential for efficient macrophage infection in vivo and that simian AIDS and death can occur in the absence of detectable macrophage infection
Acute SIV Infection in Sooty Mangabey Monkeys Is Characterized by Rapid Virus Clearance from Lymph Nodes and Absence of Productive Infection in Germinal Centers
Lymphoid tissue immunopathology is a characteristic feature of chronic HIV/SIV infection in AIDS-susceptible species, but is absent in SIV-infected natural hosts. To investigate factors contributing to this difference, we compared germinal center development and SIV RNA distribution in peripheral lymph nodes during primary SIV infection of the natural host sooty mangabey and the non-natural host pig-tailed macaque. Although SIV-infected cells were detected in the lymph node of both species at two weeks post infection, they were confined to the lymph node paracortex in immune-competent mangabeys but were seen in both the paracortex and the germinal center of SIV-infected macaques. By six weeks post infection, SIV-infected cells were no longer detected in the lymph node of sooty mangabeys. The difference in localization and rate of disappearance of SIV-infected cells between the two species was associated with trapping of cell-free virus on follicular dendritic cells and higher numbers of germinal center CD4+ T lymphocytes in macaques post SIV infection. Our data suggests that fundamental differences in the germinal center microenvironment prevent productive SIV infection within the lymph node germinal centers of natural hosts contributing to sustained immune competency
Novel Marmoset (Callithrix jacchus) Model of Human Herpesvirus 6A and 6B Infections: Immunologic, Virologic and Radiologic Characterization
Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders
Recommended from our members
A prospective longitudinal in vivo (1)H MR spectroscopy study of the SIV/macaque model of neuroAIDS
BACKGROUND: The neurological complications of HIV infection remain poorly understood. Clinically, in vivo (1)H magnetic resonance spectroscopy (MRS) demonstrates brain injury caused by HIV infection even when the MRI is normal. Our goal was to undertsand the dynamics of cerebral injury by performing a longitudinal in vivo (1)H MRS study of the SIV/macaque model of neuroAIDS. RESULTS: Eight rhesus macaques were infected with SIVmac251 and serially imaged with MRI and (1)H MRS to terminal AIDS or the endpoint of 2 years. During acute infection, there were stereotypical brain MRS changes, dominated by a significant elevation of the Cho/Cr ratio in the frontal cortex. Subsequently, brain metabolic patterns diverged between animals. There was an elevation of basal ganglia Cho/Cr four weeks post-inoculation in 2 animals that developed SIV encephalitis (p = 0.022). Metabolite ratios averaged across all 8 animals were not significantly different from baseline at any time point after 2 weeks post inoculation. However, linear regression analysis on all 8 animals revealed a positive correlation between a change in frontal lobe Cho/Cr and plasma viral load (P < 0.001, R = 0.80), and a negative correlation between NAA/Cr in the basal ganglia and the plasma viral load (P < 0.02, R = -0.73). No MRI abnormalities were detected at any time. CONCLUSIONS: After infection with SIV, macaque brain metabolism changes in a complex manner that is dependent on brain region, host factors and viral load. An elevation of basal ganglia Cho/Cr 4 weeks after SIV infection may be marker of a propensity to develop SIV encephalitis. Elevations of Cho/Cr, often observed in CNS inflammation, were associated with increased plasma viral load during acute and chronic infection. Evidence of neuronal injury in the basal ganglia was associated with increased plasma viral load in the chronic stage of infection. These observations support the use of drugs capable of controlling the viral replication and trafficking of virus into the CNS, and may help explain the reduction in incidence of HIV-associated dementia in the era of HAART despite the inability of most of those drugs to effectively enter the CNS
Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque
SummaryThe gut microbiome is widely studied by fecal sampling, but the extent to which stool reflects the commensal composition at intestinal sites is poorly understood. We investigated this relationship in rhesus macaques by 16S sequencing feces and paired lumenal and mucosal samples from ten sites distal to the jejunum. Stool composition correlated highly with the colonic lumen and mucosa and moderately with the distal small intestine. The mucosal microbiota varied most based on location and was enriched in oxygen-tolerant taxa (e.g., Helicobacter and Treponema), while the lumenal microbiota showed inter-individual variation and obligate anaerobe enrichment (e.g., Firmicutes). This mucosal and lumenal community variability corresponded to functional differences, such as nutrient availability. Additionally, Helicobacter, Faecalibacterium, and Lactobacillus levels in stool were highly predictive of their abundance at most other gut sites. These results quantify the composition and biogeographic relationships between gut microbial communities in macaques and support fecal sampling for translational studies
- …