2,204 research outputs found

    Prognostic impact of fractional flow reserve measurements in patients with acute coronary syndromes: a subanalysis of the FLORIDA study

    Get PDF
    Randomized trials suggest benefits for fractional flow reserve (FFR)-guided vs. angiography-guided treatment strategies in well-defined and selected patient cohorts with acute coronary syndromes (ACS). The long-term prognostic value of FFR measurement in unselected all-comer ACS patients, however, remains unknown. This subanalysis of the Fractional FLOw Reserve In cardiovascular DiseAses (FLORIDA) study sought to investigate the long-term effects of FFR in the management of lesions in patients with acute coronary syndrome (ACS). FLORIDA was an observational all-comer cohort study performed in Germany, that was population-based and unselected. Patients enrolled into the anonymized InGef Research Database presenting with ACS and undergoing coronary angiography between January 2014 and December 2015 were included in the analysis. Patients were stratified into either the FFR-guided or the angiography-guided treatment arm, based on the treatment received. A matched cohort study design was used. The primary endpoint was all-cause mortality. The secondary endpoint was major adverse cardiovascular events (MACE), a composite of death, non-fatal myocardial infarction (MI), and repeat revascularization. Follow-up time was 3 years. Rates of 3-year mortality were 10.2 and 14.0% in the FFR-guided and the angiography-guided treatment arms (p = 0.04), corresponding to a 27% relative risk reduction for FFR in ACS patients. Rates of MACE were similar in both arms (47.7 vs. 51.5%, p = 0.14), including similar rates of non-fatal MI (27.7 vs. 25.4%, p = 0.47) and revascularization (9.9 vs. 12.1%, p = 0.17). In this large, all-comer observational study of ACS patients, FFR-guided revascularization was associated with a lower mortality at 3 years. This finding encourages the routine use of FFR to guide lesion revascularization in patients presenting with ACS

    Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies

    Get PDF
    BACKGROUND: We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. METHODS AND RESULTS: Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P<0.001) and BO (end-diastolic pressure [mm Hg]: 8.1±4.0 versus 8.7±4.0, P=0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P<0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P<0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P=0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P<0.01). CONCLUSIONS: RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve

    Patterns of Gene Flow Define Species of Thermophilic Archaea

    Get PDF
    A genomic view of speciation in Archaea shows higher rates of gene flow within coexisting microbial species than between them

    Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs

    Get PDF
    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. Here, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis, we show that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells
    corecore