208 research outputs found

    Guidelines for consistent reporting of exchanges/to nature within life cycle inventories (LCI)

    Get PDF
    Data availability and data quality are still critical factors for successful LCA work. The SETAC-Europe LCA Working Group ‘Data Availability and Data Quality' has therefore focused on ongoing developments toward a common data exchange format, public databases and accepted quality measures to find science-based solutions than can be widely accepted. A necessary prerequisite for the free flow and exchange of life cycle inventory (LCI) data and the comparability of LCIs is the consistent definition, nomenclature, and use of inventory parameters. This is the main subject of the subgroup ‘Recommended List of Exchanges' that presents its results and findings here: • Rigid parameter lists for LCIs are not practical; especially, compulsory lists of measurements for all inventories are counterproductive. Instead, practitioners should be obliged to give the rationale for their scientific choice of selected and omitted parameters. The standardized (not: mandatory!) parameter list established by the subgroup can help to facilitate this. • The standardized nomenclature of LCI parameters and the standardized list of measurement bases (units) for these parameters need not be appliedinternally (e.g. in LCA software), but should be adhered to inexternal communications (data for publication and exchange). Deviations need to be clearly stated. • Sum parameters may or may not overlap - misinterpretations in either direction introduce a bias of unknown significance in the subsequent life cycle impact assessments (LCIA). The only person who can discriminate unambiguously is the practitioner who measures or calculates such values. Therefore, a clear statement of independence or overlap is necessary for every sum parameter reported. • Sum parameters should be only used when the group of emissions as such is measured. Individually measured emission parameters should not be hidden in group or sum parameters. • Problematic substances (such as carcinogens, ozone depleting agents and the like) maynever be obscured in group emissions (together with less harmful substances or with substances of different environmental impact), butmust be determined and reported individually, as mentioned in paragraph 3.3 of this article. • Mass and energy balances should be carried out on a unit process level. Mass balances should be done on the level of the entire mass flow in a process as well as on the level of individual chemical elements. • Whenever possible, practitioners should try to fill data gaps with their knowledge of analogous processes, environmental expert judgements, mass balance calculations, worst case assumptions or similar estimation procedure

    A genome-wide linkage scan provides evidence for both new and previously reported loci influencing common migraine.

    Get PDF
    Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components

    Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    Get PDF
    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect

    Current Issues in Migraine Genetics

    Get PDF
    Migraine often runs in families and is associated with both genetic and environmental factors. Clinical and genetic heterogeneity as well as the influence of environmental factors have hampered the identification of the gene responsible for migraine disorder. Family/twin studies suggest the presence of hereditary susceptibility. Several different types of mutations or association studies with genetic polymorphism in neurotransmitters, inflammatory cytokines, homocysteine metabolism, mitochondria, or other risk genes in cerebrovascular disorders have been reported. Recently, progress of molecular genetics in familial hemiplegic migraine has provided important insights, a channelopathy, and now extending to a growing list of membrane excitability disorders. Further identification of candidate genes for migraine and exploring the correlation between phenotype and genotype are expected in the future for the understanding of migraine pathophysiology

    Genetics of migraine in the age of genome-wide association studies

    Get PDF
    Genetic factors importantly contribute to migraine. However, unlike for rare monogenic forms of migraine, approaches to identify genes for common forms of migraine have been of limited success. Candidate gene association studies were often negative and positive results were often not replicated or replication failed. Further, the significance of positive results from linkage studies remains unclear owing to the inability to pinpoint the genes under the peaks that may be involved in migraine. Problems hampering these studies include limited sample sizes, methods of migraine ascertainment, and the heterogeneous clinical phenotype. Three genome-wide association studies are available now and have successfully identified four new genetic variants associated with migraine. One new variant (rs1835740) modulates glutamate homeostasis, thus integrates well with current concepts of neurotransmitter disturbances. This variant may be more specific for severe forms of migraine such as migraine with aura than migraine without aura. Another variant (rs11172113) implicates the lipoprotein receptor LRP1, which may interact with neuronal glutamate receptors, thus also providing a link to the glutamate pathway. In contrast, rs10166942 is in close proximity to TRPM8, which codes for a cold and pain sensor. For the first time this links a gene explicitly implicated in pain related pathways to migraine. The potential function of the fourth variant rs2651899 (PRDM16) in migraine is unclear. All these variants only confer a small to moderate change in risk for migraine, which concurs with migraine being a heterogeneous disorder. Ongoing large international collaborations will likely identify additional gene variants for migraine

    Evidence for an association between migraine and the hypocretin receptor 1 gene

    Get PDF
    The aim of our study was to investigate whether genetic variants in the hypocretin receptor 1 (HCRTR1) gene could modify the occurrence and the clinical features of migraine. Using a case–control strategy we genotyped 384 migraine patients and 259 controls for three SNPs in the HCRTR1 gene. Genotypic and allelic frequencies of the rs2271933 non-synonymous polymorphism resulted different (χ2 = 9.872, p = 0.007; χ2 = 8.108, p = 0.004) between migraineurs and controls. The carriage of the A allele was associated with an increased migraine risk (OR 1.42, 95% CI 1.11–1.81). When we divided the migraine patients into different subgroups, the difference reached the level of statistical significance only in migraine without aura. The different genotypes had no significant effect on the examined clinical characteristics of the disease. In conclusion, our data supports the hypothesis that the HCRTR1 gene could represent a genetic susceptibility factor for migraine without aura and suggests that the hypocretin system may have a role in the pathophysiology of migraine

    Association analysis of a highly polymorphic CAG Repeat in the human potassium channel gene KCNN3 and migraine susceptibility

    Get PDF
    BACKGROUND: Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. METHODS: The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. RESULTS: Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40). CONCLUSION: This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine

    The population history of northeastern Siberia since the Pleistocene.

    Get PDF
    Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas
    corecore