7,540 research outputs found
Group classification of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time
We carry out a Lie group analysis of the Sachs equations for a time-dependent
axisymmetric non-rotating space-time in which the Ricci tensor vanishes. These
equations, which are the first two members of the set of Newman-Penrose
equations, define the characteristic initial-value problem for the space-time.
We find a particular form for the initial data such that these equations admit
a Lie symmetry, and so defines a geometrically special class of such
spacetimes. These should additionally be of particular physical interest
because of this special geometric feature.Comment: 18 Pages. Submitted to Classical and Quantum Gravit
\u3cem\u3eTetrahymena thermophila\u3c/em\u3e Lack a Homologue of the Caenorhabditis Elegans Lin-4 miRNA
The netrin family of proteins was first discovered because of their role in axonal guidance during development. Netrin homologues are important developmental signals in organisms ranging from vertebrates to the nematode, Caenorhabditis elegans, and netrin-like proteins have even been found in the ciliated protozoan, Tetrahymena thermophila. Since the lin-4 miRNA regulates netrin signaling in C. elegans, we hypothesized that a lin-4 homologue might exists in Tetrahymena thermophila. In order to test this hypothesis, we purified total miRNA from T. thermophila, used this miRNA to make cDNA, then used RT-PCR to quantitate the amount of lin-4 specific cDNA we obtained. Our sample was positive for total cDNA, but not for the lin-4 cDNA specifically, suggesting that this miRNA may not have a homologue in Tetrahymena
Causation, Measurement Relevance and No-conspiracy in EPR
In this paper I assess the adequacy of no-conspiracy conditions employed in
the usual derivations of the Bell inequality in the context of EPR
correlations. First, I look at the EPR correlations from a purely
phenomenological point of view and claim that common cause explanations of
these cannot be ruled out. I argue that an appropriate common cause explanation
requires that no-conspiracy conditions are re-interpreted as mere common
cause-measurement independence conditions. In the right circumstances then,
violations of measurement independence need not entail any kind of conspiracy
(nor backwards in time causation). To the contrary, if measurement operations
in the EPR context are taken to be causally relevant in a specific way to the
experiment outcomes, their explicit causal role provides the grounds for a
common cause explanation of the corresponding correlations.Comment: 20 pages, 1 figur
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Ancient Lake Ohrid is a steep-sided, oligotrophic, karst lake that was tectonically formed most likely within the
Pliocene and often referred to as a hotspot of endemic biodiversity. This study aims on tracing significant lake level fluctuations at Lake Ohrid using high-resolution acoustic data in combination with lithological, geochemical, and chronological information from two sediment cores recovered from sub-aquatic terrace levels at ca. 32 and 60m water depth. According to our data, significant lake level fluctuations with prominent lowstands of ca. 60 and 35m below the present water level occurred during Marine Isotope Stage (MIS) 6 and MIS 5, respectively. The effect of these lowstands on biodiversity in most coastal parts of the lake is negligible, due to only small changes in lake surface area, coastline, and habitat. In contrast, biodiversity in shallower areas was
more severely affected due to disconnection of today sublacustrine springs from the main water body. Multichannel
seismic data from deeper parts of the lake clearly image several clinoform structures stacked on top of each other. These stacked clinoforms indicate significantly lower lake levels prior to MIS 6 and a stepwise rise of water level with intermittent stillstands since its existence as water-filled body, which might have caused enhanced expansion of endemic species within Lake Ohrid
Qualitative Modelling in Embodiment Design - Investigating the Contact and Channel Approach Through Analysis of Projects
Purposeful qualitative modelling of embodiment function relations is a challenge in embodiment design. This contribution investigates the applicability and usefulness of the Contact and Channel Approach as a qualitative modelling approach in a survey study. From 23 development and research projects, advantages and challenges regarding applicability and usefulness are identified. A further result is that many different models are used additionally to the Contact and Channel Approach. Based on the findings, research potential for optimization and development of links to other models emerges
Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions
Elliptic flow and two-particle azimuthal correlations of charged hadrons and
high- pions ( 1 GeV/) have been measured close to mid-rapidity in
158A GeV/ Pb+Au collisions by the CERES experiment. Elliptic flow ()
rises linearly with to a value of about 10% at 2 GeV/. Beyond
1.5 GeV/, the slope decreases considerably, possibly indicating
a saturation of at high . Two-pion azimuthal anisotropies for
1.2 GeV/ exceed the elliptic flow values by about 60% in mid-central
collisions. These non-flow contributions are attributed to near-side and
back-to-back jet-like correlations, the latter exhibiting centrality dependent
broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure
A method to disentangle single- and multi-meson production in missing mass spectra from quasi-free pn --> pn X reactions
The separation of contributions from multi- and single-meson production in
the missing mass spectrum of the quasi-free pn --> pnX reaction constitutes
a~challenging task when the reaction is studied close to threshold. This is
especially true if the resolution of the mass determination is comparable with
the excess energy and if the investigated signal appears close to the
kinematical limit. In this article we outline a method which permits the
extraction of the signal originating from the creation of a single meson
without the necessity of conducting model-dependent simulations. For the pd -->
pnXp(spectator) reactions, the method allows one to combine events
corresponding to multi-meson production at various excess energies with respect
to the pn --> pn meson process, and hence leads to an increase of the
statistics needed for the determination of the shape of the multi-meson
background.
As an example of the application of the method, we demonstrate that the
evaluation of the data from the pd --> pnXp(sp) process according to the
described technique enables one to extract a signal of the pn --> pn eta
reaction whose shape is consistent with expectations, supporting the
correctness and usefulness of the method introduced.Comment: 14 pages, 10 figure
Elliptic flow of charged pions, protons and strange particles emitted in Pb+Au collisions at top SPS energy
Differential elliptic flow spectra v2(pT) of \pi-, K0short, p, \Lambda have
been measured at \sqrt(s NN)= 17.3 GeV around midrapidity by the
CERN-CERES/NA45 experiment in mid-central Pb+Au collisions (10% of
\sigma(geo)). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for
\Lambda) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified
by dE/dx. At higher pT, proton elliptic flow v2(pT) is derived as a
constituent, besides \pi+ and K+, of the elliptic flow of positive pion
candidates. The retrieval requires additional inputs: (i) of the particle
composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios
obtained by NA49 were adapted to CERES conditions; for (ii), the measured
v2(pT) of negative pions is substituted, assuming \pi+ and \pi- elliptic flow
magnitudes to be sufficiently close. The v2(pT) spectra are compared to
ideal-hydrodynamics calculations. In synopsis of the series \pi- - K0short - p
- \Lambda, flow magnitudes are seen to fall with decreasing pT progressively
even below hydro calculations with early kinetic freeze-out (Tf= 160 MeV)
leaving not much time for hadronic evolution. The proton v2(pT) data show a
downward swing towards low pT with excursions into negative v2 values. The
pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in
principle our working assumption, is found in its impact on proton flow
bracketed from above by the direct proton flow data, and not to alter any of
our conclusions. Results are discussed in perspective of recent viscous
dynamics studies which focus on late hadronic stages.Comment: 38 pages, 27 figures, 2 tables. Abstract and parts of introduction
made more comprehensible; corrected typos; acknowledgement added. To appear
in Nucl.Phys.
- …