16 research outputs found

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    Chemical Equivalent of Arene Monooxygenases: Dearomative Synthesis of Arene Oxides and Oxepines

    No full text
    Direct epoxidation of aromatic nuclei by cytochrome P450 monooxygenases is one of the major metabolic pathways of arenes in eukaryotes. The resulting arene oxides serve as versatile precursors to phenols, oxepines, or trans-dihydrodiol-based metabolites. Although such compounds have an important biological and chemical relevance, the lack of methods for their production has hampered access to their utility. Herein, we report a general arenophile-based strategy for the dearomative synthesis of arene oxides. The mildness of this method permits access to sensitive monocyclic arene oxides without any noticeable decomposition to phenols. Moreover, this method enables direct conversion of polycyclic arenes and heteroarenes into the corresponding oxepines. Finally, these studies provided direct connection between simple aromatic precursors and complex small organic molecules via arene oxides and oxepines

    Palladium-Catalyzed Dearomative syn-1,4-Diamination

    No full text
    Herein we report a dearomative syn-1,4-diamination protocol using simple nonactivated arenes and amines. This one-pot method utilizes arene-arenophile para-cycloadducts, formed via visible-light-mediated [4+2]-photocycloaddition that undergoes formal allylic substitution with amine nucleophiles under Pd-catalysis. The products are obtained with exclusive syn-1,4-selectivity; the method permits enantioselective desymmetrization of naphthalene, as well as elaborations of amine-containing drug molecules. Furthermore, the resulting unsaturated products are amenable to numerous options for diversification. Overall, this novel dearomative functionalization strategy offers rapid and straightforward access to complex building blocks, which are difficult to prepare otherwise, from simple arenes

    Recent advances in chemical dearomatization of nonactivated arenes

    No full text
    Dearomatization reactions provide a synthetic connection between readily available, simple aromatic starting materials and more saturated intermediates of greater molecular complexity and synthetic utility. The last decade has witnessed a steady increase in the development of dearomative methods, providing new synthetic approaches to high-value building blocks and natural products. This review highlights advances both in the area of dearomatization methodologies for the most chemically inert arenes and in synthetic applications of such strategies

    Nickel-Catalyzed Decarboxylative Cross-Coupling of Perfluorobenzoates with Aryl Halides and Sulfonates

    No full text
    A Ni-catalyzed method for the coupling of perfluorobenzoates with aryl halides and pseudohalides is described. Aryl iodides, bromides, chlorides, triflates, and tosylates participate in these transformations to afford the products in good yields. Penta-, tetra-, and trifluorinated biaryl compounds are obtained using these newly developed Ni-catalyzed decarboxylative cross-coupling reactions

    Identifying the roles of amino acids, alcohols and 1,2-diamines as mediators in coupling of haloarenes to arenes

    Get PDF
    Coupling of haloarenes to arenes has been facilitated by a diverse range of organic additives in the presence of KO(t)Bu or NaO(t)Bu since the first report in 2008. Very recently, we showed that the reactivity of some of these additives (e.g., compounds 6 and 7) could be explained by the formation of organic electron donors in situ, but the role of other additives was not addressed. The simplest of these, alcohols, including 1,2-diols, 1,2-diamines, and amino acids are the most intriguing, and we now report experiments that support their roles as precursors of organic electron donors, underlining the importance of this mode of initiation in these coupling reactions
    corecore