520 research outputs found

    Analytical approximations for curved primordial power spectra

    Full text link
    We extend the work of Contaldi et al. and derive analytical approximations for primordial power spectra arising from models of inflation which include primordial spatial curvature. These analytical templates are independent of any specific inflationary potential and therefore illustrate and provide insight into the generic effects and predictions of primordial curvature, manifesting as cut-offs and oscillations at low multipoles and agreeing with numerical calculations. We identify through our analytical approximation that the effects of curvature can be mathematically attributed to shifts in the wavevectors participating dynamically.Comment: 11 pages, 2 figures, supplementary material available at https://doi.org/10.5281/zenodo.4024321. v1: As submitted to PRD. v2: As published in PRD (with only minor additions between v1 and v2

    Shapes of the Cosmological Low-Speed Collider

    Full text link
    Massive particles produced during inflation leave specific signatures in soft limits of correlation functions of primordial fluctuations. When the Goldstone boson of broken time translations acquires a reduced speed of sound, implying that de Sitter boosts are strongly broken, we introduce a novel discovery channel to detect new physics during inflation, called the cosmological low-speed collider signal. This signal is characterised by a distinctive resonance lying in mildly-soft kinematic configurations of cosmological correlators, indicating the presence of a heavy particle, whose position enables to reconstruct its mass. We show that this resonance can be understood in terms of a non-local single field effective field theory, in which the heavy field becomes effectively non-dynamical. This theory accurately describes the full dynamics of the Goldstone boson and captures all multi-field physical effects distinct from the non-perturbative particle production leading to the conventional cosmological collider signal. As such, this theory provides a systematic and tractable way to study the imprint of massive fields on cosmological correlators. We conduct a thorough study of the low-speed collider phenomenology in the scalar bispectrum, showing that large non-Gaussianities with new shapes can be generated, in particular beyond weak mixing. We also provide a low-speed collider template for future cosmological surveys.Comment: 58 pages, 9 figure

    Parity Violation from Emergent Non-Locality During Inflation

    Full text link
    Parity violation in the early universe holds great promise for uncovering new physics. In particular, the primordial scalar four-point correlation function is allowed to develop a parity-violating component when massive spinning particles coupled to a helical chemical potential are present during inflation. In this paper, we explore the rich physics of such a parity-violating trispectrum in the presence of a reduced speed of sound for the Goldstone boson of broken time translations. We show that this signal can be significantly large while remaining under perturbative control, offering promising observational prospects for future cosmological surveys. In the limit of a reduced sound speed, the dynamics admits an effective non-local description organized as a time-derivative expansion. This reveals that parity violation arises due to emergent non-locality in the single-field effective theory. At leading order, this effective theory yields a compact trispectrum template, written in terms of elementary functions. We then conduct a comprehensive analysis of the kinematic dependence of this parity-violating trispectrum and reveal new features. In addition to the low-speed collider resonance, we find a new class of signals lying in the internal soft-limit of the correlator. This signal is characterized by an oscillatory pattern periodic in the momentum ratio, with a frequency determined by the speed of sound and the chemical potential, making it drastically distinct from the conventional cosmological collider signal.Comment: 15 pages, 5 figure

    Symbiont-specific responses to environmental cues in a threesome lichen symbiosis

    Get PDF
    Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25 degrees C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15 degrees C, the green algae mainly at 25 degrees C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima

    Antibacterial properties and abrasion-stability: Development of a novel silver-compound material for orthodontic bracket application

    Get PDF
    Purpose: Bacteria-induced white spot lesions are a common side effect of modern orthodontic treatment. Therefore, there is a need for novel orthodontic bracket materials with antibacterial properties that also resist long-term abrasion. The aim of this study was to investigate the abrasion-stable antibacterial properties of a newly developed, thoroughly silver-infiltrated material for orthodontic bracket application in an in situ experiment. Methods: To generate the novel material, silver was vacuum-infiltrated into a sintered porous tungsten matrix. A tooth brushing simulation machine was used to perform abrasion equal to 2 years of tooth brushing. The material was characterized by energy dispersive X‑ray (EDX) analysis and roughness measurement. To test for antibacterial properties in situ, individual occlusal splints equipped with specimens were worn intraorally by 12 periodontal healthy patients for 48 h. After fluorescence staining, the quantitative biofilm volume and live/dead distribution of the initial biofilm formation were analyzed by confocal laser scanning microscopy (CLSM). Results: Silver was infiltrated homogeneously throughout the tungsten matrix. Toothbrush abrasion only slightly reduced the material’s thickness similar to conventional stainless steel bracket material and did not alter surface roughness. The new silver-modified material showed significantly reduced biofilm accumulation in situ. The effect was maintained even after abrasion. Conclusion: A promising, novel silver-infiltrated abrasion-stable material for use as orthodontic brackets, which also exhibit strong antibacterial properties on in situ grown oral biofilms, was developed. The strong antibacterial properties were maintained even after surface abrasion simulated with long-term toothbrushing

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore