213 research outputs found

    Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

    Get PDF
    BACKGROUND: Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease. METHODS: 330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models. RESULTS: Using a nominal P 64 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified. CONCLUSIONS: No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val), is predictive of cardiovascular disease biomarkers

    Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the Plasmodium falciparum Drug Target, Prolyl-tRNA-synthetase

    Get PDF
    Plasmodium falciparum (<i>Pf</i>) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit <i>Pf</i>ProRS enzyme activity versus Homo sapiens (<i>Hs</i>) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of <i>Pf</i>ProRS. We identified two new inhibitors of <i>Pf</i>ProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for <i>Pf</i>ProRS compared to <i>Hs</i>ProRS, demonstrating this class of compounds could overcome the toxicity related to <i>Hs</i>ProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with <i>Pf</i>ProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria

    Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction

    Get PDF
    15 pags, 9 figsOne goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. © 2011 Wiley-Liss, Inc.Grant sponsor: Spanish Ministry of Education and Science; Grant number: BFU2008-01588; Grant sponsor: European Commission; Grant number: NMP4-CT-2006-033256; Grant sponsor: Spanish Ministry of Education and Science (José Castillejo fellowship); Grant sponsor: Xunta de Galicia (Angeles Alvariño fellowship); Grant sponsor: National Institutes of Health; Grant numbers: K22-CA124517 (D.E.C.); R01-GM090161 (C.K.) GM074942; GM094585; Grant sponsor: U. S. Department of Energy, Office of Biological and Environmental Research; Grant number: DE-AC02-06CH11357 (to A.J.); Grant sponsor: Foundation for Polish Science (to K.M.); Grant sponsor: NSF; Grant number: DBI 0829586

    The Cryptosporidium parvum Kinome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the <it>Cryptosporidium parvum </it>kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase.</p> <p>Results</p> <p>The <it>C</it>. <it>parvum </it>kinome comprises over 70 members, some of which may be promising drug targets. These <it>C. parvum </it>protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of <it>Cryptosporidium spp</it>. Comparison of specific kinases with their <it>Plasmodium falciparum </it>and <it>Toxoplasma gondii </it>orthologues revealed some distinct characteristics within the <it>C. parvum </it>kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening <it>Cp</it>CDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC<sub>50 </sub>values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of <it>Cp</it>CDPK1. In addition, structural analysis of <it>Cp</it>CDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation.</p> <p>Conclusions</p> <p>Identification and comparison of the <it>C. parvum </it>protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.</p

    Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head

    Get PDF
    Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region.Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 A resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs.The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics

    Why Do Situational Interviews Predict Performance? Is it Saying How You Would Behave or Knowing How You Should Behave?

    Get PDF
    Purpose: The present study examined two theoretical explanations for why situational interviews predict work-related performance, namely (a) that they are measures of interviewees’ behavioral intentions or (b) that they are measures of interviewees’ ability to correctly decipher situational demands. Design/Methodology/Approach: We tested these explanations with 101 students, who participated in a 2-day selection simulation. Findings: In line with the first explanation, there was considerable similarity between what participants said they would do and their actual behavior in corresponding work-related situations. However, the underlying postulated mechanism was not supported by the data. In line with the second explanation, participants’ ability to correctly decipher situational demands was related to performance in both the interview and work-related situations. Furthermore, the relationship between the interview and performance in the work-related situations was partially explained by this ability to decipher situational demands. Implications: Assessing interviewees’ ability to identify criteria might be of additional value for making selection decisions, particularly for jobs where it is essential to assess situational demands. Originality/Value: The present study made an effort to open the ‘black box’ of situational interview validity by examining two explanations for their validity. The results provided only moderate support for the first explanation. However, the second explanation was fully supported by these results

    To automate or not to automate: this is the question

    Get PDF
    New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected
    corecore