152 research outputs found
A Broad Learning Approach for Context-Aware Mobile Application Recommendation
With the rapid development of mobile apps, the availability of a large number
of mobile apps in application stores brings challenge to locate appropriate
apps for users. Providing accurate mobile app recommendation for users becomes
an imperative task. Conventional approaches mainly focus on learning users'
preferences and app features to predict the user-app ratings. However, most of
them did not consider the interactions among the context information of apps.
To address this issue, we propose a broad learning approach for
\textbf{C}ontext-\textbf{A}ware app recommendation with \textbf{T}ensor
\textbf{A}nalysis (CATA). Specifically, we utilize a tensor-based framework to
effectively integrate user's preference, app category information and
multi-view features to facilitate the performance of app rating prediction. The
multidimensional structure is employed to capture the hidden relationships
between multiple app categories with multi-view features. We develop an
efficient factorization method which applies Tucker decomposition to learn the
full-order interactions within multiple categories and features. Furthermore,
we employ a group norm regularization to learn the group-wise
feature importance of each view with respect to each app category. Experiments
on two real-world mobile app datasets demonstrate the effectiveness of the
proposed method
Suppression of spermatogenesis before grafting increases survival and supports resurgence of spermatogenesis in adult mouse testis
Objective: To test whether absence of complete spermatogenesis in mature testicular tissue before grafting will increase graft survival. Design: Prospective experimental study. Setting: Laboratory. Animal(s): Donor testes were obtained from adult untreated mice, adult mice rendered cryptorchid, and adult mice treated with a GnRH antagonist (acyline). Intervention(s): Donor testes were ectopically grafted to nude mice and recovered at three time points. Main Outcome Measure(s): Most advanced germ cell type and presence of spermatogonia were assessed. Donor testes and grafts were analyzed by histology and by immunocytochemistry for ubiquitin C-terminal hydrolase-L1 to mark germ cells. Result(s): Suppression of spermatogenesis by inducing cryptorchidism or acyline treatment resulted in improved survival of grafted tissue compared with controls and recovery of complete spermatogenesis, whereas control testis grafts mostly degenerated and did not restore complete spermatogenesis. Conclusion(s): These results indicate that complete spermatogenesis at the time of grafting has a negative effect on graft survival. Grafting of adult testis tissue from donors with suppressed spermatogenesis leads to spermatogenic recovery and may provide a tool to study and preserve fertility and for conservation of genetic resources in individuals that lack complete germ cell differentiation. © 2012 American Society for Reproductive Medicine.Peer Reviewe
Differential responses to genotoxic agents between induced pluripotent stem cells and tumor cell lines
Given potential values of induced pluripotent stem (iPS) cells in basic biomedical research and regenerative medicine, it is important to understand how these cells regulate their genome stability in response to environmental toxins and carcinogens. The present study characterized the effect of Cr(VI), a well-known genotoxic agent and environmental carcinogen, on major molecular components of DNA damage response pathways in human iPS cells. We compared the effect of Cr(VI) on human iPS cells with two established cell lines, Tera-1 (teratoma origin) and BEAS-2B (lung epithelial origin). We also studied the effect of hydrogen peroxide and doxorubicin on modulating DNA damage responses in these cell types. We demonstrated that ATM and p53 phosphorylation is differentially regulated in human iPS cells compared with Tera-1 and BEAS-2B cells after exposure to various genotoxic agents. Moreover, we observed that inhibition of CK2, but not p38, promotes phosphorylation of p53(S392) in iPS cells. Combined, our data reveal some unique features of DNA damage responses in human iPS cells
MRI signal intensity differentiation of brainstem encephalitis induced by Enterovirus 71: a classification approach for acute and convalescence stages
Additional file 3. After tick the segment region, Medflovan show the segmentation region of lesion
New Findings, Classification and Long-Term Follow-Up Study Based on MRI Characterization of Brainstem Encephalitis Induced by Enterovirus 71
Background To report the diversity of MRI features of brainstem encephalitis (BE) induced by Enterovirus 71. This is supported by implementation and testing of our new classification scheme in order to improve the diagnostic level on this specific disease.
Methods Neuroimaging of 91 pediatric patients who got EV71 related BE were hospitalized between March, 2010 to October, 2012, were analyzed retrospectively. All patients underwent pre- and post-contrast MRI scan. Thereafter, 31 patients were randomly called back for follow-up MRI study during December 2013 to August 2014. The MRI signal patterns of BE primary lesion were analyzed and classified according to MR signal alteration at various disease stages. Findings in fatal and non-fatal cases were compared, and according to the MRI scan time point during the course of this disease, the patients’ conditions were classified as 1) acute stage, 2) convalescence stage, 3) post mortem stage, and 4) long term follow-up study.
Results 103 patients were identified. 11 patients did not undergo MRI, as they died within 48 hours. One patient died on 14th day without MR imaging. 2 patients had postmortem MRI. Medical records and imaging were reviewed in the 91 patients, aged 4 months to 12 years, and two cadavers who have had MRI scan. At acute stage: the most frequent pattern (40 patients) was foci of prolonged T1 and T2 signal, with (15) or without (25) contrast enhancement. We observed a novel pattern in 4 patients having foci of low signal intensity on T2WI, with contrast enhancement. Another pattern in 10 patients having foci of contrast enhancement without abnormalities in T1WI or T2WI weighted images. Based on 2 cases, the entire medulla and pons had prolonged T1 and T2 signal, and 2 of our postmortem cases demonstrated the same pattern. At convalescence stage, the pattern observed in 4 patients was foci of prolonged T1 and T2 signal without contrast enhancement. Follow-up MR study of 31 cases showed normal in 26 cases, and demonstrated foci of prolonged T1 and T2 signal with hyper-intensity on FLAIR in 3 cases, or of prolonged T1 and T2 signal with hypo-intensity on FLAIR in 2 cases. Most importantly, MR findings of each case were thoroughly investigated and classified according to phases and MRI signal alteration.
Conclusions This study has provided enhanced and useful information for the MRI features of BE induced by EV71, apart from common practice established by previous reports. In addition, a classification scheme that summarizes all types of features based on the MRI signal at the four different stages of the disease would be helpful to improve the diagnostic level
Gene Expression and Protein Synthesis in Mitochondria Enhance the Duration of High-Speed Linear Motility in Boar Sperm
Sperm motility patterns are continuously changed after ejaculation to fertilization in the female tract. Hyperactivated motility is induced with high glucose medium in vitro or the oviduct fluids in vivo, whereas sperm maintain linear motility in the seminal plasma or the uterine fluids containing low glucose. Therefore, it is estimated that sperm motility patterns are dependent on the energy sources, and the mitochondrial oxidative phosphorylation is activated to produce ATP in low glucose condition. To elucidate these hypotheses, boar sperm was incubated in different energy conditions with the transcription and translation inhibitors in vitro. Sperm motility parameters, mitochondrial activity, ATP level, gene expression and protein synthesis were analyzed. Sperm progressive motility and straight-line velocity were significantly increased with decreasing glucose level in the incubation medium. Moreover, the mitochondrial protein turnover meaning transcription and translation from mitochondrial genome in sperm is activated during incubation. Incubation of sperm with mitochondrial translation inhibitor (D-chloramphenicol) suppressed mitochondrial protein synthesis, mitochondrial activity and ATP level in sperm and consequently reduced the linear motility speed, but not the motility. Thus, it is revealed that the mitochondrial central dogma is active in sperm, and the high-speed linear motility is induced in low glucose condition via activating the mitochondrial activity for ATP generation.This work was supported in part by Livestock Promotional Funds of Japan Racing Association (JRA) grant no. H30-279 and by Hiroshima Cryopreservation Service Co., grant no. H30-1 (to MS). ZZ was supported by China Scholarship Council during a visit of “Zhendong Zhu” to Hiroshima University (#CSC201706300110).The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2019.00252/full#supplementary-materia
FTO Knockout Causes Chromosome Instability and G2/M Arrest in Mouse GC-1 Cells
N6-methyladenosine (m6A) is the most abundant modification on eukaryotic mRNA. m6A plays important roles in the regulation of post-transcriptional RNA splicing, translation, and degradation. Increasing studies have uncovered the significance of m6A in various biological processes such as stem cell fate determination, carcinogenesis, adipogenesis, stress response, etc, which put forwards a novel conception called epitranscriptome. However, functions of the fat mass and obesity-associated protein (FTO), the first characterized m6A demethylase, in spermatogenesis remains obscure. Here we reported that depletion of FTO by CRISPR/Cas9 induces chromosome instability and G2/M arrest in mouse spermatogonia, which was partially rescued by expression of wild type FTO but not demethylase inactivated FTO. FTO depletion significantly decreased the expression of mitotic checkpoint complex and G2/M regulators. We further demonstrated that the m6A modification on Mad1, Mad2, Bub1b, Cdk1, and Ccnb2 were directly targeted by FTO. Therefore, FTO regulates cell cycle and mitosis checkpoint in spermatogonia because of its m6A demethylase activity. The findings give novel insights into the role of RNA methylation in spermatogenesis
Effects of the SNAP-25 Mnll variant on hippocampal functional connectivity in children with attention deficit/hyperactivity disorder
ObjectivesAttention-deficit/hyperactivity disorder (ADHD) is one of the most widespread and highly heritable neurodevelopmental disorders affecting children worldwide. Although synaptosomal-associated protein 25 (SNAP-25) is a possible gene hypothesized to be associated with working memory deficits in ADHD, little is known about its specific impact on the hippocampus. The goal of the current study was to determine how variations in ADHD’s SNAP-25 Mnll polymorphism (rs3746544) affect hippocampal functional connectivity (FC).MethodsA total of 88 boys between the ages of 7 and 10 years were recruited for the study, including 60 patients with ADHD and 28 healthy controls (HCs). Data from resting-state functional magnetic resonance imaging (rs-fMRI) and clinical information were acquired and assessed. Two single nucleotide polymorphisms (SNP) in the SNAP-25 gene were genotyped, according to which the study’s findings separated ADHD patients into two groups: TT homozygotes (TT = 35) and G-allele carriers (TG = 25).ResultsBased on the rs-fMRI data, the FC of the right hippocampus and left frontal gyrus was evaluated using group-based comparisons. The corresponding sensitivities and specificities were assessed. Following comparisons between the patient groups, different hippocampal FCs were identified. When compared to TT patients, children with TG had a lower FC between the right precuneus and the right hippocampus, and a higher FC between the right hippocampus and the left middle frontal gyrus.ConclusionThe fundamental neurological pathways connecting the SNAP-25 Mnll polymorphism with ADHD via the FC of the hippocampus were newly revealed in this study. As a result, the hippocampal FC may further serve as an imaging biomarker for ADHD
Breast cancer survival analysis with molecular subtypes : an initial step
As a predominant threat to women's health world-wide, breast cancer has become increasingly important in on-cology research. The discovery of molecular subtypes of breast cancer has led to more subtype oriented treatment and prognosis prediction. Effective prognosis models help to estimate the recurrence as well as the quality and duration of survival, leading to more personalized treatments. However, most traditional prognostic models either ignore molecular subtypes or only make limited use of them. The roles of molecular subtypes in the development and treatment of breast cancer have not been fully revealed. With the over 1200 cases collected by Sir Run Run Shaw Hospital of Zhejiang University in the past two decades, we aim to improve understanding of molecular subtypes and their impacts on the prognosis via data analysis in the long run. As the initial stage, this short paper presents our preliminary work of logistic regression experiments with the data. Though molecular subtypes have not been included the tentative model, they are to be explored further in following stages
- …