4 research outputs found
Icariin Treatment Enhanced the Skeletal Response to Exercise in Estrogen-Deficient Rats
Estrogen deficiency frequently leads to a fall in estrogen receptor-α (ERα) numbers and then reduces the skeletal response to mechanical strain. It, however, is still unclear whether phytoestrogen administration will enhance the effects of exercise on the estrogen-deficient bone loss. This study aimed to determine the effect of Icariin treatment on the response of osteogenic formation to exercise in ovariectomized (OVX) rats. Thirty-two 3-month old female Sprague–Dawley rats were randomly allocated into four groups: (1) Sham-operated (SO); (2) OVX; (3) OVX plus exercise (EX); and (4) OVX plus exercise and Icariin (EI). After 8-week interventions, the rats were killed and samples were collected for bone morphometry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. EI interventions showed a greater improvement for the OVX-induced bone loss and the elevated serum tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) compared with EX only. Both EX and EI interventions bettered the OVX-related reduction of BV/TV and trabecular number and thickness, and decreased the enlargement of trabecular bone separation (Tb. Sp); the improvement for BV/TV and Tb. Sp was greater in EI group. Furthermore, EX and EI treatment significantly increased the number of ALP+ cells and mineralized nodule areas compared with OVX group; the change was higher in EI group. Additionally, in comparison to OVX rats, the protein and mRNA expression of β-catenin, phosphorylated-Akt (p-Akt) or Akt, ERα, and Runt-related transcription factor 2 (Runx2) in osteoblasts were elevated in EX and EI intervention rats, with greater change observed in EI group. The upregulated β-catenin and Akt mRNA levels in EX and EI groups was depressed by ICI182780 treatment, and the difference in β-catenin and Akt mRNA levels between EX and EI groups was no longer significant. Conclusively, the combination of Icariin and exercise significantly prevent OVX-induced bone loss and increase osteoblast differentiation and the ability of mineralization compared with exercise alone; the changes might be regulated partly by ERα/Akt/β-catenin pathway
Beamspace precoding and beam selection for wideband millimeter-Wave MIMO relying on lens antenna arrays
Millimeter-wave (mmWave) multiple-input multiple-out (MIMO) systems relying on lens antenna arrays are capable of achieving a high antenna-gain at a considerably reduced number of radio frequency (RF) chains via beam selection. However, the traditional beam selection network suffers from significant performance loss in wideband systems due to the effect of beam squint. In this paper, we propose a phase shifter-aided beam selection network, which enables a single RF chain to support multiple focused-energy beams, for mitigating the beam squint in wideband mmWave MIMO systems. Based on this architecture, we additionally design an efficient transmit precoder (TPC) for maximizing the achievable sum-rate, which is composed of beam selection and beamspace precoding. Specifically, we decouple the design problems of beamspace precoding and beam selection by exploiting the fact that the beam selection matrix has a limited number of candidates. For the beamspace precoding design, we propose a successive interference cancellation (SIC)-based method, which decomposes the associated optimization problem into a series of subproblems and solves them successively. For the beam selection design, we propose an energy-max beam selection method for avoiding the high complexity of exhaustive search, and derive the number of required beams for striking an attractive trade-off between the hardware cost and system performance. Our simulation results show that the proposed beamspace precoding and beam selection methods achieve both a higher sum-rate and a higher energy efficiency than its conventional counterparts.<br/