4 research outputs found

    Antifungal effects and biocontrol potential of lipopeptide-producing Streptomyces against banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense

    Get PDF
    Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4), presents the foremost menace to the global banana production. Extensive efforts have been made to search for efficient biological control agents for disease management. Our previous study showed that Streptomyces sp. XY006 exhibited a strong inhibitory activity against several phytopathogenic fungi, including F. oxysporum. Here, the corresponding antifungal metabolites were purified and determined to be two cyclic lipopeptide homologs, lipopeptin A and lipopeptin B. Combined treatment with lipopeptin complex antagonized Foc TR4 by inhibiting mycelial growth and conidial sporulation, suppressing the synthesis of ergosterol and fatty acids and lowering the production of fusaric acid. Electron microscopy observation showed that lipopeptide treatment induced a severe disruption of the plasma membrane, leading to cell leakage. Lipopeptin A displayed a more pronounced antifungal activity against Foc TR4 than lipopeptin B. In pot experiments, strain XY006 successfully colonized banana plantlets and suppressed the incidence of FWB, with a biocontrol efficacy of up to 87.7%. Additionally, XY006 fermentation culture application improved plant growth parameters and induced peroxidase activity in treated plantlets, suggesting a possible role in induced resistance. Our findings highlight the potential of strain XY006 as a biological agent for FWB, and further research is needed to enhance its efficacy and mode of action in planta

    Endophytic Actinomycetes from Tea Plants (Camellia sinensis): Isolation, Abundance, Antimicrobial, and Plant-Growth-Promoting Activities

    No full text
    Endophytic actinomycetes are a promising source of novel metabolites with diverse biological activities. Tea plants (Camellia sinensis) produce arsenals of phytochemicals, which are linked to a number of medicinal and nutritional properties. However, a systematic investigation into the abundance and diversity of cultivated actinomycetes residing in tea plants has not been performed. In this study, a total of 46 actinobacteria were recovered from leaf, stem, and root samples of 15 tea cultivars collected in Fujian province, China. Their abundance and diversity were shown to be influenced by both the genotypes and tissue types of tea plants. Based on 16S RNA sequence analysis, these isolates were taxonomically grouped into 11 families and 13 genera, including Streptomyces, Actinomadura, Kribbella, Nocardia, Kytococcus, Leifsonia, Microbacterium, Micromonospora, Mobilicoccus, Mycobacterium, Nocardiopsis, Piscicoccus, and Pseudonocardia. The genus Streptomyces was most prevalent whereas rare genera, Mobilicoccus and Piscicoccus, were reported for the first time to occur as plant endophytes. PCR screening of polyketide synthase genes (PKS-I and PKS-II) and nonribosomal peptide synthetase genes (NRPS), along with antimicrobial assays against a set of bacterial and fungal pathogens, showed that endophytic actinomycetes associated with tea plants have a high potential for producing antimicrobial metabolites. Furthermore, indole acetic acid (IAA) production and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were recorded in 93.5% and 21.7% of all isolates, respectively. Overall, these results indicate that endophytic actinomycetes from tea plants represent a valuable source of bioactive metabolites with antibacterial, antifungal, and plant-growth-promoting properties
    corecore