108 research outputs found

    Variability of Gene Expression After Polyhaploidization in Wheat (Triticum aestivum L.)

    Get PDF
    Interspecific hybridization has a much greater effect than chromosome doubling on gene expression; however, the associations between homeologous gene expression changes and polyhaploidization had rarely been addressed. In this study, cDNA–single strand conformation polymorphism analysis was applied to measure the expression of 30 homeologous transcripts in naturally occurring haploid (ABD, 2n = 21) and its polyploid maternal parent Yumai 21A (AABBDD, 2n = 42) in wheat. Only one gene (TC251989) showed preferentially silenced homoeoalleles in haploids. Further analyses of 24 single-copy genes known to be silenced in the root and/or leaf also found no evidence of homeologous silencing in 1-month-old haploids and two ESTs (BF484100 and BF473379) exhibit different expression patterns between 4-month-old haploids and hexaploids. Global analysis of the gene expression patterns using the Affymetrix GeneChip showed that of the 55,052 genes probed, only about 0.11% in the shoots and 0.25% in the roots were activated by polyhaploidization. The results demonstrate that activation and silencing of homoeoalleles were not widespread in haploid seedlings

    Two Rapid Power Iterative DOA Estimators for UAV Emitter Using Massive/Ultra-massive Receive Array

    Full text link
    To provide rapid direction finding (DF) for unmanned aerial vehicle (UAV) emitter in future wireless networks, a low-complexity direction of arrival (DOA) estimation architecture for massive multiple input multiple output (MIMO) receiver arrays is constructed. In this paper, we propose two strategies to address the extremely high complexity caused by eigenvalue decomposition of the received signal covariance matrix. Firstly, a rapid power-iterative rotational invariance (RPI-RI) method is proposed, which adopts the signal subspace generated by power iteration to gets the final direction estimation through rotational invariance between subarrays. RPI-RI makes a significant complexity reduction at the cost of a substantial performance loss. In order to further reduce the complexity and provide a good directional measurement result, a rapid power-iterative Polynomial rooting (RPI-PR) method is proposed, which utilizes the noise subspace combined with polynomial solution method to get the optimal direction estimation. In addition, the influence of initial vector selection on convergence in the power iteration is analyzed, especially when the initial vector is orthogonal to the incident wave. Simulation results show that the two proposed methods outperform the conventional DOA estimation methods in terms of computational complexity. In particular, the RPIPR method achieves more than two orders of magnitude lower complexity than conventional methods and achieves performance close to CRLB. Moreover, it is verified that the initial vector and the relative error have a significant impact on the performance of the computational complexity

    Brassinosteroids affect wood development and properties of Fraxinus mandshurica

    Get PDF
    IntroductionXylem development plays a crucial role in wood formation in woody plants. In recent years, there has been growing attention towards the impact of brassinosteroids (BRs) on this xylem development. In the present study, we evaluated the dynamic variation of xylem development in Fraxinus mandshurica (female parent, M8) and a novel interspecific hybrid F. mandshurica × Fraxinus sogdiana (1601) from May to August 2020.MethodsWe obtained RNA-Seq transcriptomes of three tissue types (xylem, phloem, and leaf) to identify the differences in xylem-differentially expressed genes (X-DEGs) and xylem-specifically expressed genes (X-SEGs) in M8 and 1601 variants. We then further evaluated these genes via weighted gene co-expression network analysis (WGCNA) alongside overexpressing FmCPD, a BR biosynthesis enzyme gene, in transient transgenic F. mandshurica.ResultsOur results indicated that the xylem development cycle of 1601 was extended by 2 weeks compared to that of M8. In addition, during the later wood development stages (secondary wall thickening) of 1601, an increased cellulose content (14%) and a reduced lignin content (11%) was observed. Furthermore, vessel length and width increased by 67% and 37%, respectively, in 1601 compared with those of M8. A total of 4589 X-DEGs were identified, including enzymes related to phenylpropane metabolism, galactose metabolism, BR synthesis, and signal transduction pathways. WGCNA identified hub X-SEGs involved in cellulose synthesis and BR signaling in the 1601 wood formation–related module (CESA8, COR1, C3H14, and C3H15); in contrast, genes involved in phenylpropane metabolism were significantly enriched in the M8 wood formation–related module (CCoAOMT and CCR). Moreover, overexpression of FmCPD in transient transgenic F. mandshurica affected the expression of genes associated with lignin and cellulose biosynthesis signal transduction. Finally, BR content was determined to be approximately 20% lower in the M8 xylem than in the 1601 xylem, and the exogenous application of BRs (24-epi brassinolide) significantly increased the number of xylem cell layers and altered the composition of the secondary cell walls in F. mandshurica.DiscussionOur findings suggest that BR biosynthesis and signaling play a critical role in the differing wood development and properties observed between M8 and 1601 F. mandshurica

    Towards a high-intensity muon source at CiADS

    Full text link
    The proposal of a high-intensity muon source driven by the CiADS linac, which has the potential to be one of the state-of-the-art facilities, is presented in this paper. We briefly introduce the development progress of the superconducting linac of CiADS. Then the consideration of challenges related to the high-power muon production target is given and the liquid lithium jet muon production target concept is proposed, for the first time. The exploration of the optimal target geometry for surface muon production efficiency and the investigation into the performance of liquid lithium jet target in muon rate are given. Based on the comparison between the liquid lithium jet target and the rotation graphite target, from perspectives of surface muon production efficiency, heat processing ability and target geometry compactness, the advantages of the new target concept are demonstrated and described comprehensively. The technical challenges and the feasibility of the free-surface liquid lithium target are discussed

    Green and Efficient Utilization of Ferruginous Gibbsite Ore and Ferruginous Manganese Ore by Synergetic Carbothermic Co-Reduction–Magnetic Separation Process

    No full text
    The synergetic utilization of ferruginous gibbsite ores (Al-Fe ores) and ferruginous manganese ores (Mn-Fe ores) by the carbothermic co-reduction roasting–magnetic separation process was proposed as an innovative and green process for the separation and recovery of the valuable metal elements of Mn, Fe and Al from these ores. In this paper, a ferromanganese crude alloy with 72.47% Fe and 10.19% Mn and a high recovery of 85.89% Fe was prepared, which produces an acceptable feed to produce manganese steels with an electric arc furnace. The synergistic co-reduction of the two kinds of complex and refractory minerals was favored to separate Fe, Mn and Al from these ores. The influence of the operating variables on the recovery and separation of valuable metals from Mn-Fe ores and Al-Fe ores is initially studied. Then, the stepwise reduction behaviors of a composite oxide Mn1-xFexO (0 ≤ x ≤ 1) and hercynite (Mn1−yFeyAl2O4, 0 ≤ y ≤ 1) were investigated to clarify that Mn-Fe ores have a positive impact on the reduction of fayalite and hercynite in Al-Fe ores. This study reported a simple green route, the carbothermic co-reduction–magnetic separation process, to economically and effectively treat Al-Fe ores and Mn-Fe ores
    corecore