622 research outputs found

    Iteratively Optimized Patch Label Inference Network for Automatic Pavement Disease Detection

    Full text link
    We present a novel deep learning framework named the Iteratively Optimized Patch Label Inference Network (IOPLIN) for automatically detecting various pavement diseases that are not solely limited to specific ones, such as cracks and potholes. IOPLIN can be iteratively trained with only the image label via the Expectation-Maximization Inspired Patch Label Distillation (EMIPLD) strategy, and accomplish this task well by inferring the labels of patches from the pavement images. IOPLIN enjoys many desirable properties over the state-of-the-art single branch CNN models such as GoogLeNet and EfficientNet. It is able to handle images in different resolutions, and sufficiently utilize image information particularly for the high-resolution ones, since IOPLIN extracts the visual features from unrevised image patches instead of the resized entire image. Moreover, it can roughly localize the pavement distress without using any prior localization information in the training phase. In order to better evaluate the effectiveness of our method in practice, we construct a large-scale Bituminous Pavement Disease Detection dataset named CQU-BPDD consisting of 60,059 high-resolution pavement images, which are acquired from different areas at different times. Extensive results on this dataset demonstrate the superiority of IOPLIN over the state-of-the-art image classification approaches in automatic pavement disease detection. The source codes of IOPLIN are released on \url{https://github.com/DearCaat/ioplin}.Comment: Revision on IEEE Trans on IT

    Learning Personalized End-to-End Goal-Oriented Dialog

    Full text link
    Most existing works on dialog systems only consider conversation content while neglecting the personality of the user the bot is interacting with, which begets several unsolved issues. In this paper, we present a personalized end-to-end model in an attempt to leverage personalization in goal-oriented dialogs. We first introduce a Profile Model which encodes user profiles into distributed embeddings and refers to conversation history from other similar users. Then a Preference Model captures user preferences over knowledge base entities to handle the ambiguity in user requests. The two models are combined into the Personalized MemN2N. Experiments show that the proposed model achieves qualitative performance improvements over state-of-the-art methods. As for human evaluation, it also outperforms other approaches in terms of task completion rate and user satisfaction.Comment: Accepted by AAAI 201

    Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning

    Full text link
    Domain adaptation problems arise in a variety of applications, where a training dataset from the \textit{source} domain and a test dataset from the \textit{target} domain typically follow different distributions. The primary difficulty in designing effective learning models to solve such problems lies in how to bridge the gap between the source and target distributions. In this paper, we provide comprehensive analysis of feature learning algorithms used in conjunction with linear classifiers for domain adaptation. Our analysis shows that in order to achieve good adaptation performance, the second moments of the source domain distribution and target domain distribution should be similar. Based on our new analysis, a novel extremely easy feature learning algorithm for domain adaptation is proposed. Furthermore, our algorithm is extended by leveraging multiple layers, leading to a deep linear model. We evaluate the effectiveness of the proposed algorithms in terms of domain adaptation tasks on the Amazon review dataset and the spam dataset from the ECML/PKDD 2006 discovery challenge.Comment: ijca

    Piezoelectric Accelerometer with Improved Temperature Stability

    Get PDF
    Piezoceramic materials like PZT allow the manufacturing of piezoelectric sensors with advantages including high sensitivity, low price, and easy to shape. However, it is also featured with the pyroelectric effect, which brings extra charge generation with temperature variations. Those charges caused by the thermal effect contribute to errors in the sensor measurement result. Theoretically, the appropriate configuration of the sensor would neutralize the thermal effect. In this thesis, a triple layer piezoelectric sensor with a parallel connection would be used to check its thermal stability at elevated temperatures. The thesis begins with reviewing the fundamental concepts of piezoelectricity. The following section contains the analysis of the relationship between the different external inputs and the output of a triple layer sensor. The experiment is designed to put the triple layer sensor in a chamber with a temperature control system to test its performance at around 35 ℃ with sinusoidal excitation input. A unimorph sensor would be set as the reference group, so that the result of the triple layer sensor could have a comparison with. The cancellation of the temperature effect in the triple layer sensor successfully reduces the output deviation to an acceptable level. Meanwhile, the unimorph structure sensor exhibits obvious instability under the same conditions

    Deformable Kernel Expansion Model for Efficient Arbitrary-shaped Scene Text Detection

    Full text link
    Scene text detection is a challenging computer vision task due to the high variation in text shapes and ratios. In this work, we propose a scene text detector named Deformable Kernel Expansion (DKE), which incorporates the merits of both segmentation and contour-based detectors. DKE employs a segmentation module to segment the shrunken text region as the text kernel, then expands the text kernel contour to obtain text boundary by regressing the vertex-wise offsets. Generating the text kernel by segmentation enables DKE to inherit the arbitrary-shaped text region modeling capability of segmentation-based detectors. Regressing the kernel contour with some sampled vertices enables DKE to avoid the complicated pixel-level post-processing and better learn contour deformation as the contour-based detectors. Moreover, we propose an Optimal Bipartite Graph Matching Loss (OBGML) that measures the matching error between the predicted contour and the ground truth, which efficiently minimizes the global contour matching distance. Extensive experiments on CTW1500, Total-Text, MSRA-TD500, and ICDAR2015 demonstrate that DKE achieves a good tradeoff between accuracy and efficiency in scene text detection

    Text Assisted Insight Ranking Using Context-Aware Memory Network

    Full text link
    Extracting valuable facts or informative summaries from multi-dimensional tables, i.e. insight mining, is an important task in data analysis and business intelligence. However, ranking the importance of insights remains a challenging and unexplored task. The main challenge is that explicitly scoring an insight or giving it a rank requires a thorough understanding of the tables and costs a lot of manual efforts, which leads to the lack of available training data for the insight ranking problem. In this paper, we propose an insight ranking model that consists of two parts: A neural ranking model explores the data characteristics, such as the header semantics and the data statistical features, and a memory network model introduces table structure and context information into the ranking process. We also build a dataset with text assistance. Experimental results show that our approach largely improves the ranking precision as reported in multi evaluation metrics.Comment: Accepted to AAAI 201

    Suboptimal subspace construction for log-determinant approximation

    Full text link
    Variance reduction is a crucial idea for Monte Carlo simulation and the stochastic Lanczos quadrature method is a dedicated method to approximate the trace of a matrix function. Inspired by their advantages, we combine these two techniques to approximate the log-determinant of large-scale symmetric positive definite matrices. Key questions to be answered for such a method are how to construct or choose an appropriate projection subspace and derive guaranteed theoretical analysis. This paper applies some probabilistic approaches including the projection-cost-preserving sketch and matrix concentration inequalities to construct a suboptimal subspace. Furthermore, we provide some insights on choosing design parameters in the underlying algorithm by deriving corresponding approximation error and probabilistic error estimations. Numerical experiments demonstrate our method's effectiveness and illustrate the quality of the derived error bounds
    • …
    corecore