791 research outputs found

    Edificio clínico en Suiza

    Get PDF
    Por necesidades de la Confederación Suiza se ha construido un servicio médico de control en la frontera de Brigue con Italia destinado a los obreros italianos que entran a Suiza por esta población. Al objeto, los Ferrocarriles federales pusieron a su disposición un terreno en el andén núm. I de la estación, entre dos edificios ya existentes, con la condición de revestir su propiedad a aquel Organismo en el momento en que deje de ser útil a la Confederación. En este caso se prevé una fácil adaptación del edificio para oficinas

    Seasonal Synchronization of Influenza in the United States Older Adult Population

    Get PDF
    In temperate regions, influenza epidemics occur annually with the highest activity occurring during the winter months. While seasonal dynamics of the influenza virus, such as time of onset and circulating strains, are well documented by the Centers for Disease Control and Prevention Influenza Surveillance System, an accurate prediction of timing, magnitude, and composition of circulating strains of seasonal influenza remains elusive. To facilitate public health preparedness for seasonal influenza and to obtain better insights into the spatiotemporal behavior of emerging strains, it is important to develop measurable characteristics of seasonal oscillation and to quantify the relationships between those parameters on a spatial scale. The objectives of our research were to examine the seasonality of influenza on a national and state level as well as the relationship between peak timing and intensity of influenza in the United States older adult population.A total of 248,889 hospitalization records were extracted from the Centers for Medicare and Medicaid Services for the influenza seasons 1991-2004. Harmonic regression models were used to quantify the peak timing and absolute intensity for each of the 48 contiguous states and Washington, DC. We found that individual influenza seasons showed spatial synchrony with consistent late or early timing occurring across all 48 states during each influenza season in comparison to the overall average. On a national level, seasons that had an earlier peak also had higher rates of influenza (r(s) = -0.5). We demonstrated a spatial trend in peak timing of influenza; western states such as Nevada, Utah, and California peaked earlier and New England States such as Rhode Island, Maine, and New Hampshire peaked later.Our findings suggest that a systematic description of influenza seasonal patterns is a valuable tool for disease surveillance and can facilitate strategies for prevention of severe disease in the vulnerable, older adult population

    Light-Driven Electron Accumulation in a Molecular Pentad

    Get PDF
    Accumulation and temporary storage of redox equivalents with visible light as an energy input is of pivotal importance for artificial photosynthesis because key reactions, such as CO2 reduction or water oxidation, require the transfer of multiple redox equivalents. We report on the first purely molecular system, in which a long-lived charge-separated state (τ≈870 ns) with two electrons accumulated on a suitable acceptor unit can be observed after excitation with visible light. Importantly, no sacrificial reagents were employed

    SMART: An Open Source Data Labeling Platform for Supervised Learning

    Full text link
    SMART is an open source web application designed to help data scientists and research teams efficiently build labeled training data sets for supervised machine learning tasks. SMART provides users with an intuitive interface for creating labeled data sets, supports active learning to help reduce the required amount of labeled data, and incorporates inter-rater reliability statistics to provide insight into label quality. SMART is designed to be platform agnostic and easily deployable to meet the needs of as many different research teams as possible. The project website contains links to the code repository and extensive user documentation.Comment: 5 pages, 1 figur

    Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad

    Get PDF
    The Pt(bodipy)-(mercaptopyrene) dyad BPtSPyr shows four different emissions: intense near-infrared phosphorescence (Φph up to 15%) from a charge-transfer state pyrS˙+-Pt-BDP˙−, additional fluorescence and phosphorescence emissions from the 1ππ* and 3ππ* states of the bodipy ligand at r.t., and phosphorescence from the pyrene 3ππ* and the bodipy 3ππ* states in a glassy matrix at 77 K.publishe

    Pas de Deux of an NO Couple: Synchronous Photoswitching from a Double-Linear to a Double-Bent Ru(NO)(2) Core under Nitrosyl Charge Conservation

    Get PDF
    The {Ru(NO)(2)}(10) dinitrosylruthenium complex [Ru(NO)(2)(PPh3)(2)] (1) shows photo-induced linkage isomerism (PLI) of a special kind: the two NO ligands switch, on photo-excitation, synchronously from the ground state (GS) with two almost linear RuNO functions to a metastable state (MS) which persists up to 230 K and can be populated to approximate to 50 %. The MS was experimentally characterised by photo-crystallography, IR spectroscopy and DS-calorimetry as a double-bent variant of the double-linear GS. The experimental results are confirmed by computation which unravels the GS/MS transition as a disrotatory synchronous 50 degrees turn of the two nitrosyl ligands. Although 1 shows the usual redshift of the N-O stretch on bending the MNO unit, there is no increased charge transfer from Ru to NO along the GS-to-MS path. In terms of the effective-oxidation-state (EOS) method, both isomers of 1 and the transition state are Ru-II(NO+)(2) species

    Intramolecular Light-Driven Accumulation of Reduction Equivalents by Proton-Coupled Electron Transfer

    Get PDF
    The photochemistry of a molecular pentad composed of a central anthraquinone (AQ) acceptor flanked by two Ru(bpy)32+ photosensitizers and two peripheral triarylamine (TAA) donors was investigated by transient IR and UV–vis spectroscopies in the presence of 0.2 M p-toluenesulfonic acid (TsOH) in deaerated acetonitrile. In ∼15% of all excited pentad molecules, AQ is converted to its hydroquinone form (AQH2) via reversible intramolecular electron transfer from the two TAA units (τ = 65 ps), followed by intermolecular proton transfer from TsOH (τ ≈ 3 ns for the first step). Although the light-driven accumulation of reduction equivalents occurs through a sequence of electron and proton transfer steps, the resulting photoproduct decays via concerted PCET (τ = 4.7 μs) with an H/D kinetic isotope effect of 1.4 ± 0.2. Moreover, the reoxidation of AQH2 seems to take place via a double electron transfer step involving both TAA+ units rather than sequential single electron transfer events. Thus, the overall charge-recombination reaction seems to involve a concerted proton-coupled two-electron oxidation of AQH2. The comparison of experimental data obtained in neat acetonitrile with data from acidic solutions suggests that the inverted driving-force effect can play a crucial role for obtaining long-lived photoproducts resulting from multiphoton, multielectron processes. Our pentad provides the first example of light-driven accumulation of reduction equivalents stabilized by PCET in artificial molecular systems without sacrificial reagents. Our study provides fundamental insight into how light-driven multielectron redox chemistry, for example the reduction of CO2 or the oxidation of H2O, can potentially be performed without sacrificial reagents

    Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads

    Get PDF
    We report on the photophysical properties of three dyads that combine a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (bodipy, BDP) and a mercaptopyrene (SPyr) dye ligand at a Pt(PEt3)(2) fragment. sigma-Bonding of the dyes to the Pt ion promotes intersystem crossing (ISC) via the external heavy atom effect. The coupling of efficient ISC with charge-transfer from the electron-rich mercaptopyrene to the electron-accepting BDP ligand (PB-CT) gives rise to a multitude of (potentially) emissive states. This culminates in the presence of four different emissions for the mono- and dinuclear complexes BPtSPyr and BPtSPyrSPtB with an unsubstituted BDP ligand and either a terminal 1-mercaptopyrene or a bridging pyrene-1,6-dithiolate ligand. Thus, in fluid solution, near IR emission at 724 nm from the (PB)-P-3-CT state is observed with a quantum yield of up to 15%. Excitation into the BDP-based (1)pi pi* or the pyrene-based (1)pi pi* band additionally trigger fluorescence and phosphorescence emissions from the BDP-centred (1)pi pi* and (3)pi pi* states. In frozen solution, at 77 K, phosphorescence from the pyrene ligand becomes the prominent emission channel, while PB-CT emission is absent. Alkylation of the BDP ligand in KBPtSPyr funnels all excitation energy into fluorescence and phosphorescence emissions from the KBDP ligand. The assignments of the various excited states and the deactivation cascades were probed by absorption and emission spectroscopy, transient absorption spectroscopy, electrochemical and UV/Vis/NIR spectroelectrochemical measurements, and by quantum chemical calculations. Our conclusions are further corroborated with the aid of suitable reference compounds comprising of just one chromophore. All dyads are triplet sensitizers and are able to generate singlet oxygen
    corecore