4,910 research outputs found

    Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling

    Full text link
    We investigate the effects of the intense terahertz laser field and the spin-orbit coupling on single electron spin in a quantum dot. The laser field and the spin-orbit coupling can strongly affect the electron density of states and can excite a magnetic moment. The direction of the magnetic moment depends on the symmetries of the system, and its amplitude can be tuned by the strength and frequency of the laser field as well as the spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Immunohistochemical evidence: testicular and scented glandular androgen synthesis in muskrats (Ondatra zibethicus) during the breeding season

    Get PDF
    In order to elucidate the relationship between androgens and the function of the muskrat (Ondatra zibethicus) scented glands during the breeding season, we investigated immunolocalization of steroidogenic enzymes P450scc, 3βHSD and P450c17 in the muskrat testes and scented glands. Nine adult muskrats were obtained in March (n=3), May (n=3) and July (n=3) 2010. Steroidogenic enzymes were immunolocalized using polyclonal antisera raised against bovine adrenal P450scc, human placental 3βHSD and porcine testicular P450c17. Histologically, all types of spermatogenic cells including mature-phase spermatozoa in seminiferous tubules were observed in all testes. Glandular cells, interstitial cells, epithelial cells and excretory tubules were identified in scented glands during the breeding season. P450scc, 3βHSD and P450c17 were only identified in Leydig cells during the breeding season; P450scc and P450c17 were observed in glandular cells of scented glands, however, 3βHSD was not found in scented glands during the breeding season. These novel findings provide the first evidence showing that scented glands of the muskrats are capable of locally synthesizing androgens and androgens acting via an endocrine, autocrine or paracrine manner may play an important role in scented gland function during the breeding season

    Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes

    Get PDF
    A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube both along the axial and along the radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.Comment: 13 pages, 4 figure
    corecore