28 research outputs found

    Encapsulation of hydrophobic phthalocyanine with poly(N-isopropylacrylamide)/lipid composite microspheres for thermo-responsive release and photodynamic therapy

    Full text link
    Phthalocyanine (Pc) is a type of promising sensitizer molecules for photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous medium. The incorporation of lipid molecules significantly enhances the Pc loading efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After internalization, the particles show efficient fluorescent imaging and PDT effect. Our work demonstrates promising candidates in promoting the use of hydrophobic drugs including photosensitizers in tumor therapies

    Internalized compartments encapsulated nanogels for targeted drug delivery

    Get PDF
    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. Endosome formed by internalization of plasma membrane has massive of membrane proteins and receptors on the surface, which is able to specifically target to the homotypic cells. Herein, we describe a simple method to fabricate an endosome membrane-coated nanogel (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating crosslinker and photoiniator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation inside endosome. The resulting endosome mimetic nanogels loaded with Doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to bare HA nanogel with DOX. This study illustrates the potential of utilizing endosome membrane-mimicking formulation for targeted cancer therapy, and offers guideline for developing natural particulates-inspired drug delivery system

    Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1

    Get PDF
    Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers

    Abnormal Decrease of Macrophage ALKBH5 Expression Causes Abnormal Polarization and Inhibits Osteoblast Differentiation

    No full text
    Peri-implant tissue inflammation is an inflammatory injury that occurs in the soft and hard tissues surrounding the implant and is the main cause of short- or long-term failure of implant prosthetic restorations, which is compounded by bone loss and bone destruction in the alveolar bone of diabetes patients with peri-implantitis. However, the mechanisms underlying the persistence of diabetic peri-implantitis, as well as the essential connections and key molecules that regulate its start and progression, remain unknown. In this study, we discovered that M1 macrophage polarization was abnormally enhanced in diabetic peri-implantitis and influenced the osteogenic differentiation of mesenchymal stem cells. RNA sequencing revealed that ALKBH5 expression was abnormally reduced in diabetic peri-implantitis. Further mechanism study showed that ALKBH5 and its mediated m6A can influence osteogenic differentiation, which in turn influences the persistence of diabetic peri-implantitis. Our findings present a new mechanism for the suppression of osteoblast development in diabetic peri-implantitis and a new treatment strategy to promote anabolism by inhibiting ALKBH5

    Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P(VDF-TrFE) ultra-thin films

    No full text
    The ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films mainly depend on the crystal orientation and crystallinity. We demonstrate here the thermal history and thickness dependent crystal orientation in P(VDF-TrFE) ultrathin films, and its correlation with local polarization reversal. Upon annealing in the paraelectric phase after spin-cast, the lamellar crystals grow preferentially along the crystallographic a axis, with the c axis (chain axis) parallel to the substrate. In contrast, when crystallized in the paraelectric phase from melt, the lamellar crystals take a flat-on orientation with the crystallographic c-axis normal to the substrate. In addition, local measurement by piezoresponse force microscopy indicates that the flat-on crystals do not display any polarization switching, whereas the edge-on crystals exhibit proper switching upon application of a vertical electric field. Importantly, the coercive field measured from the piezoresponse hysteresis loops does not change with the film thickness in the edge-on oriented lamellar crystals

    Tunable dual-stimuli response of a microgel composite consisting of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) hydrogel microspheres

    Full text link
    A type of photo- and thermo-responsive composite microsphere composed of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) (rGO@pNIPAM) is successfully fabricated by a facile solution mixing method. Due to the high optical absorbance and thermal conduction of rGO, the composite microspheres are endowed with the new property of photo-response, in addition to the intrinsic thermally sensitive property of pNIPAM. This new ability undoubtedly enlarges the scope of applications of the microgel spheres. Furthermore, through controlling the rGO content in the composite, the photo- and thermo-sensitivity of the composite can be effectively modulated. That is, with a lower rGO content (≤32% by weight), the composite microspheres perform only thermally induced changes, such as volume contraction (by ∼45% in diameter) and drug release, when crossing the lower critical solution temperature of pNIPAM. With a higher rGO content (∼47.5%), both temperature and light irradiation can trigger changes in the composite. However, when the rGO content is increased to around 64.5%, the thermo-responsivity of the composite disappears, and the spheres exhibit only photo-induced drug release. With a further increase in rGO content, the environmentally responsive ability of the microspheres vanishes. This journal is © the Partner Organisations 2014

    Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases

    Full text link
    The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes
    corecore