39 research outputs found

    Bacteria as drug delivery vehicles

    Get PDF
    Doctor of PhilosophyDepartment of Chemical EngineeringStefan H. BossmannBoth chemotherapy for cancer treatment and antibiotic therapy for bacterial infections require systemic applications of the drug and a systemic application is always linked to a number of disadvantages. To circumvent these a targeted drug delivery system was developed. It utilizes the ability of phagocytes from the hosts own immune system to recognize and internalize antigens. Deactivated M. luteus, a non-pathogenic gram positive bacteria was loaded with high concentrations (exceeding the IC50 at least 60 fold in local intracellular concentration) the chemotherapeutics doxorubicin or DP44mt or with the bactericidal chlorhexidine. The modified bacteria is fed to phagocytes (Monocytes/Macrophages or neutrophils) and serves as protective shell for the transporting and targeting phagocyte. The phagocyte is recruited to the tumor site or site of infection and releases the drug along with the processed M. luteus via the exosome pathway upon arrival. The chlorhexidine drug delivery system was successfully tested both in vitro and in vivo, reducing the pathogen count and preventing systemic spread of a F. necrophorum infection in a mouse model. The doxorubicin drug delivery system reduced the viability of 4T1 cancer cells to 20% over the course of four days in vitro

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    First operation of the KATRIN experiment with tritium

    Get PDF
    The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of ÎČ ÎČ -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 0.2 eV (90% 90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019

    Applications of Atomic Force Microscope (AFM) in the Field of Nanomaterials and Nanocomposites

    No full text

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ→pπ−\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019 (stat)±0.012 (syst) , P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023 (stat)±0.014 (syst)  P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ→pπ−\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019 (stat)±0.012 (syst) , P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023 (stat)±0.014 (syst) . P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Tracking of charged particles with nanosecond lifetimes at LHCb

    No full text
    A method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ−\Xi^- baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at s=13\sqrt{s}=13 TeV, corresponding to an integrated luminosity of 2.0 fb−1{}^{-1} collected with the LHCb detector in 2018. Significant improvements in the angular resolution and the signal purity are obtained. The method is implemented as part of the LHCb Run 3 event trigger in a set of requirements to select detached hyperons. This is the first demonstration of the applicability of this approach at the LHC, and the first to show its scaling with instantaneous luminosity

    Measurement of D0−D‟0D^0-\overline{D}^0 mixing and search for CPCP violation with D0→K+π−D^0\rightarrow K^+\pi^- decays

    No full text
    International audienceA measurement of the time-dependent ratio of the D0→K+π−D^0\rightarrow K^+\pi^- to D‟0→K+π−\overline{D}^0\rightarrow K^+\pi^- decay rates is reported. The analysis uses a sample of proton-proton collisions corresponding to an integrated luminosity of 6 fb−1^-1 recorded by the LHCb experiment from 2015 through 2018 at a center-of-mass energy of 13 TeV. The D0D^0 meson is required to originate from a D∗+→D0π+D^{*+}\rightarrow D^0\pi^+ decay, such that its flavor at production is inferred from the charge of the accompanying pion. The measurement is performed simultaneously for the K+π−K^+\pi^- and K−π+K^-\pi^+ final states, allowing both mixing and CPCP-violation parameters to be determined. The value of the ratio of the decay rates at production is determined to be RKπ=(343.1±2.0)×10−5R_{K\pi} = (343.1 \pm 2.0) \times 10^{-5}. The mixing parameters are measured to be cKπ=(51.4±3.5)×10−4c_{K\pi} = (51.4 \pm 3.5) \times 10^{-4} and cKπâ€Č=(13±4)×10−6c_{K\pi}^{\prime} = (13 \pm 4) \times 10^{-6}, where RKπcKπ\sqrt{R_{K\pi}}c_{K\pi} is the linear coefficient of the expansion of the ratio as a function of decay time in units of the D0D^0 lifetime, and cKπâ€Čc_{K\pi}^{\prime} is the quadratic coefficient, both averaged between the K+π−K^+\pi^- and K−π+K^-\pi^+ final states. The precision is improved relative to the previous best measurement by approximately 60%. No evidence for CPCP violation is found

    Tracking of charged particles with nanosecond lifetimes at LHCb

    No full text
    International audienceA method is presented to reconstruct charged particles with lifetimes between 10 ps and 10 ns, which considers a combination of their decay products and the partial tracks created by the initial charged particle. Using the Ξ−\Xi^- baryon as a benchmark, the method is demonstrated with simulated events and proton-proton collision data at s=13\sqrt{s}=13 TeV, corresponding to an integrated luminosity of 2.0 fb−1{}^{-1} collected with the LHCb detector in 2018. Significant improvements in the angular resolution and the signal purity are obtained. The method is implemented as part of the LHCb Run 3 event trigger in a set of requirements to select detached hyperons. This is the first demonstration of the applicability of this approach at the LHC, and the first to show its scaling with instantaneous luminosity

    Amplitude analysis and branching fraction measurement of B+→D∗−Ds+π+B^{+}\to D^{*-}D^{+}_{s}\pi^{+} decays

    No full text
    International audienceThe decays of the B+B^{+} meson to the final state D∗−Ds+π+D^{*-}D^{+}_{s}\pi^{+} are studied in proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1^{-1}. The ratio of branching fractions of the B+→D∗−Ds+π+B^{+}\to D^{*-}D^{+}_{s}\pi^{+} and B0→D∗−Ds+B^{0}\to D^{*-}D^{+}_{s} decays is measured to be 0.173±0.006±0.0100.173\pm 0.006\pm 0.010, where the first uncertainty is statistical and the second is systematic. Using partially reconstructed Ds∗+→Ds+ÎłD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+π0D^{+}_{s}\pi^{0} decays, the ratio of branching fractions between the B+→D∗−Ds∗+π+B^{+}\to D^{*-}D^{*+}_{s}\pi^{+} and B+→D∗−Ds+π+B^{+}\to D^{*-}D^{+}_{s}\pi^{+} decays is determined as 1.31±0.07±0.141.31\pm 0.07\pm 0.14. An amplitude analysis of the B+→D∗−Ds+π+B^{+}\to D^{*-}D^{+}_{s}\pi^{+} decay is performed for the first time, revealing dominant contributions from known excited charm resonances decaying to the D∗−π+D^{*-}\pi^{+} final state. No significant evidence of exotic contributions in the Ds+π+D^{+}_{s}\pi^{+} or D∗−Ds+D^{*-}D^{+}_{s} channels is found. The fit fraction of the scalar state Tcsˉ0∗(2900)++T_{c\bar{s} 0}^{\ast}(2900)^{++} observed in the B+→D−Ds+π+B^{+}\to D^{-}D^{+}_{s}\pi^{+} decay is determined to be less than 2.3% at a 90% confidence level
    corecore