2,347 research outputs found

    Transverse Momentum Dependent Parton Distributions at Small-x

    Full text link
    We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky-Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins-Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.Comment: 23 pages, 9 figure

    A Novel Multifunction Digital Chip Design Based on CMOS Technology

    Get PDF
    The realization of an analog-to-digital-conversion chip has great significance in the applications of electronic products. By considering mature time–number digitization, a new multifunction digital chip with a long time delay was designed in this study on the basis of the principle of analog-to-time conversion (ATC) and the realization of long time delay. With additional resistance, capacitance, and transistors, this chip can easily realize ATC, monostable triggers, Schmitt triggers, and multivibrators. The circuit composition of this chip was analyzed, and every module design was introduced. According to the simulation result of Hspice and CSMC 2P2M CMOS (Complementary Metal Oxide Semiconductor) process database, the chip layout (1mm2) design was accomplished by using CSMC 2P2M CMOS technology. Finally, the designed chip was applied in multiproject wafer flow. The flow test demonstrated that this new chip can meet design goal and is applicable to various digital integrated chip designs as an IP (intellectual property) core

    Entanglement dynamics of a superconducting phase qubit coupled to a two-level system

    Get PDF
    We report the observation and quantitative characterization of driven and spontaneous oscillations of quantum entanglement, as measured by concurrence, in a bipartite system consisting of a macroscopic Josephson phase qubit coupled to a microscopic two-level system. The data clearly show the behavior of entanglement dynamics such as sudden death and revival, and the effect of decoherence and ac driving on entanglement.Comment: 6 pages,4 figure

    Anisotropy in Dijet Production in Exclusive and Inclusive Processes

    Full text link
    We investigate the effect of soft gluon radiations on the azimuthal angle correlation between the total and relative momenta of two jets in inclusive and exclusive dijet processes. We show that the final state effect induces a sizable cos(2ϕ)\cos(2\phi) anisotropy due to gluon emissions near the jet cones. The phenomenological consequences of this observation are discussed for various collider experiments, including diffractive processes in ultraperipheral pApA and AAAA collisions, inclusive and diffractive dijet production at the EIC, and inclusive dijet in pppp and AAAA collisions at the LHC.Comment: 7 pages, 4 figure

    Quantum phase transitions in a two-dimensional quantum XYX model: Ground-state fidelity and entanglement

    Full text link
    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin 1/2 anti-ferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground state wave functions.Comment: 4+ pages, 3 figure

    2-(4-Methyl­phen­yl)-5-[({[5-(4-methyl­phen­yl)-1,3,4-thia­diazol-2-yl]sulfan­yl}meth­yl)sulfan­yl]-1,3,4-thia­diazole

    Get PDF
    In the title compound, C19H16N4S4, the mol­ecules exhibit a butterfly conformation, where the thia­diazole and attached benzene rings in two wings are almost coplanar, with dihedral angles of 0.8 (3) and 0.9 (3)°, respectively, while the two thia­diazole rings form a dihedral angle of 46.3 (3)°
    corecore