58 research outputs found

    DFT Studies on Ni-Mediated C–F Cleavage for the Synthesis of Cyclopentadiene Derivatives

    Get PDF
    Density functional theory calculations have been performed to study the detailed mechanism of Ni-mediated [3+2] cycloaddition of 2-trifluoromethyl-1-alkenes with alkynes via cleavage of two C-F bonds. It was found that the reaction pathway involves oxidative cyclization, the first β-fluorine elimination, and then intramolecular 5-endo insertion of difluoroalkene, followed by the second cleavage of C-F bond, and finally the dissociation of difluorides yields the fluorine-containing product cyclopentadienes in sequence. The overall rate-determining step is the combined processes of the β-fluorine elimination and the 5-endo insertion. Furthermore, we investigated the effect of different ligands and the regioselectivity of asymmetric alkynes. The detailed energy profiles and structures are presented in this study

    High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata

    Get PDF
    Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome--assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont

    Research on Turning Motion Targets and Velocity Estimation in High Resolution Spaceborne SAR

    No full text
    The development of high resolution SAR makes the influence of moving target more prominent, which results in defocusing and other unexplained phenomena. This paper focuses on the research of imaging signatures and velocity estimation of turning motion targets. In this paper, the turning motion is regarded as the straight line motion of continuous change of moving direction. Through the analysis of the straight line motion with constant velocity and the geometric modeling of the turning motion in spaceborne SAR, the imaging signatures of the turning motion target are obtained, such as the broken line phenomenon at the curve. Furthermore, a method for estimating the turning velocity is proposed here. The radial velocity is calculated by the azimuth offset of the turning motion target and the azimuth velocity is calculated by the phase error compensated in the refocusing process. The amplitude and direction of the velocity can be obtained by using both of them. The results of simulation and GF-3 data prove the accuracy of the analysis of turning motion imaging signatures, and they also show the accuracy and validity of the velocity estimation method in this paper

    Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR

    No full text
    Complex motion can cause serious defocusing phenomena in high resolution spaceborne SAR cases, which then lead to decreased image resolution. In this study, we built a simulation model to quantitatively analyze the signature and effect on maritime fluctuating targets in high resolution cases. To deal with formed Single-Look Complex (SLC) SAR images containing fluctuating targets, we implement a motion-compensation and fine-focusing method to obtain refocused images and the fluctuation parameters. We demonstrate the effectiveness and correctness of the proposed approach in focusing and estimating the parameters of fluctuating targets by processing the simulation results and archived images acquired by Terra-SAR in hybrid spotlight mode

    An Improved BAQ Encoding and Decoding Method for Improving the Quantized SNR of SAR Raw Data

    No full text
    When the original echo data of SAR are saturated for quantization, the performance of the commonly used block adaptive quantization (BAQ) algorithm will be degraded, which will degrade the imaging quality. This article proposes an improved Llody-Max codec method, which only needs to change the codec look-up table to get better quantization performance when the original echo is saturated. The simulation results show that the proposed method can reduce the quantization power loss, improve the echo signal-to-noise ratio (SNR), and reduce the influence of quantization saturation on the scattering mechanism of polarized SAR data, which have good practical application value

    Cross-Talk between Transcriptome Analysis and Dynamic Changes of Carbohydrates Identifies Stage-Specific Genes during the Flower Bud Differentiation Process of Chinese Cherry (<i>Prunus pseudocerasus</i> L.)

    No full text
    Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar ‘Manaohong’. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries

    Long-Term Performance of Nitrogen Removal and Microbial Analysis in an Anammox MBBR Reactor with Internal Circulation to Provide Low Concentration DO

    No full text
    The anammox process is considered as a revolutionary new denitrification technology. In this study, the anammox process was started in a single-stage moving bed biofilm reactor (MBBR) and the mechanism of excess removal of ammonia nitrogen was studied. At stage I (day 0&ndash;51), anammox bacteria (AnAOB) was enriched by feeding synthetic sewage without adding organic carbon. The removal rate of ammonia nitrogen was maintained at about 54% and the removal rate of total inorganic nitrogen was maintained at about 62%. At stage II (day 52&ndash;91), internal circulation was added into the MBBR. After adding internal circulation, the ammonium removal efficiency reached about 96% (at day 56) and the total nitrogen removal efficiency reached about 86%. At day 90, the biofilm sample was drowned out for high-throughput sequencing. The results showed that the relative abundance of AnAOB was 23.23%. The dominant anammox genus was Candidatus Brocadia. The relative abundance of Nitrosomonas (ammonia oxidizing bacteria, AOB) was 0.63%. The excess ammonia nitrogen was removed by AOB and AnAOB through the partial nitrification and anammox (PNA) process

    A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation

    No full text
    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode

    Environmental factors driving the succession and differentiation of ecological strategy spectrum in tropical lowland rain forest

    No full text
    We aimed to determine the environmental driving factors underpinning successional changes in a tropical lowland rain forest in Hainan. Using hectare scale plots, we evaluated woody plant community composition and collected a variety of environmental variables. We found that the ecological strategy spectrum of communities in the four succession stages differentiated along the C-S axis, but no major communities were found in the R strategy group. The spectrum of ecological strategy of different communities is significantly different with succession, among which C strategy group is on the rise, S strategy group is on the decline, and the intermediate (INT) group strategy is on the rise after the first decline. For the C strategy group, population density and canopy openness explain most of the differences. The S strategy group are explained by slope and population density, while the first two explanatory factors of intermediate strategy group differences are slope and soil total potassium content. The change of plant ecological strategy is the result of comprehensive action of biotic factors, topographic factors and soil factors, among which biotic factors play a leading role
    • …
    corecore