7,454 research outputs found

    Modeling of DBT Biodesulfurization by Resting Cells of Gordonia sp. WQ-01A Immobilized in Alginate Gel Beads in an Oil-water-immobilization System

    Get PDF
    In this study, the resting cells of Gordonia sp. WQ-01A, a DBT-desulfurizing strain, were immobilized by calcium alginate. Batch DBT biodesulfurization experiments using immobilized cells and n-dodecane as the oil phase were conducted in fermenter under varying operating conditions such as initial DBT concentration, bead loading and the oil phase volume fraction. When the initial DBT concentration is 0.5, 1 and 5 mmol L-1, the DBT concentration dropped almost to zero after t = 40, 60 and 100 hours, respectively. The influence of bead loading and the oil-phase volume fraction was small to the DBT biodesulfurization. Furthermore, a mathematical model was proposed to simulate the batch DBT biodesulfurization process in an oil-water-immobilization system, which took into account the internal and external mass transfer resistances of DBT and oxygen, and the intrinsic kinetics of bacteria. To validate this model, the comparison between the model simulations and the experimental measurements of DBT concentration profiles in the oil phase was carried out and the agreement is very good. In addition, the time and radius courses of DBT and oxygen concentrations within the alginate gel beads were reasonably predicted by the proposed model

    Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    Full text link
    In layered superconductors, Josephson junctions may be formed within the unit cell due to sufficiently low interlayer coupling. These intrinsic Josephson junction (iJJ) systems have attracted considerable interest for their application potential in quantum computing as well as efficient sources of THz radiation, closing the famous "THz gap". So far, iJJ have been demonstrated in single-band, copper-based high-Tc superconductors, mainly in Ba-Sr-Ca-Cu-O. Here we report clear experimental evidence for iJJ behavior in the iron-based superconductor (V2Sr4O6)Fe2As2. The intrinsic junctions are identified by periodic oscillations of the flux flow voltage upon increasing a well aligned in-plane magnetic field. The periodicity is well explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. This finding adds (V2Sr4O6)Fe2As2 as the first iron-based, multi-band superconductor to the copper-based iJJ materials of interest for Josephson junction applications, and in particular novel devices based on multi-band Josephson coupling may be realized.Comment: Accepted in Nature Physic

    Color-flavor locked strangelets in a quark mass density-dependent model

    Get PDF
    The color-flavor locked (CFL) phase of strangelets is investigated in a quark mass density-dependent model. Parameters are determined by stability arguments. It is concluded that three solutions to the system equations can be found, corresponding, respectively, to positively charged, negatively charged, and nearly neutral CFL strangelets. The charge to baryon number of the positively charged strangelets is smaller than the previous result, while the charge of the negatively charged strangelets is nearly proportional in magnitude to the cubic-root of the baryon number. However, the positively charged strangelets are more stable compared to the other two solutions.Comment: 11 pages,7 figures, Accepted for publication in Int. J. Mod. Phys.

    Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets

    Full text link
    Thermodynamic formulas for investigating systems with density and/or temperature dependent particle masses are generally derived from the fundamental derivation equality of thermodynamics. Various problems in the previous treatments are discussed and modified. Properties of strange quark matter in bulk and strangelets at both zero and finite temperature are then calculated based on the new thermodynamic formulas with a new quark mass scaling, which indicates that low mass strangelets near beta equilibrium are multi-quark states with an anti-strange quark, such as the pentaquark (u^2d^2\bar{s}) for baryon nmber 1 and the octaquark (u^4d^3\bar{s}) for dibaryon etc.Comment: 14 pages, 12 figures, Revtex4 styl

    Using value added feedback for accountability and school improvement purposes: evidence from China

    Get PDF
    Paper Presented at 11th UKFIET international conference on education and development : Global Challenges for Education: Economics, Environment and Emergency, Theme: Education for good governance and sustainability and Subtheme: Governance, incentives and accountability in education: tackling poor performance and corruption Oxford 13 - 15 September 2011.This paper examines the potential use of Value Added measures of school effectiveness and other related data for the purpose of informing and enhancing the impact of strategies to raise educational quality in China. In particular new approaches to accountability and school improvement are explored as a way of tackling poor school and student performance. Evidence is drawn from two recent DFID/ESRC funded projects: “Improving Educational Evaluation and Quality in China” and “Improving Teacher Development and Educational Quality in China”. Qualitative interviews with key stakeholders have been conducted and quantitative evidence of statistically significant differences in senior school effectiveness has been demonstrated in three eastern and western regions. The findings indicate that Value Added measures can provide a valid and relevant measure of educational quality in China, similar to the conclusions drawn from equivalent evidence in other countries such as UK. Moreover, the Value Added concept and measurement approach are seen as a more scientific and welcome addition to current methods of evaluating Chinese schools and teachers, although nevertheless it is essential to take account of local priorities and contexts in China when considering any new evaluation systems. The key question of whether Value Added measures of school effectiveness would be most useful or appropriate within a public accountability framework or as a means to enhance confidential feedback for school selfevaluation and improvement initiatives, or alternatively for both purposes is discussed. The challenges and barriers to introducing new accountability and school improvement measures and reforms in China is also discussed

    (Sr_3Sc_2O_5)Fe_2As_2 as a possible parent compound for FeAs-based superconductors

    Full text link
    A new compound with the FeAs-layers, namely (Sr_3Sc_2O_5)Fe_2As_2 (abbreviated as FeAs-32522), was successfully fabricated. It has a layered structure with the space group of I4/mmm, and with the lattice constants a = 4.069 A˚\AA and c = 26.876 A˚\AA. The in-plane Fe ions construct a square lattice which is close to that of other FeAs-based superconductors, such as REFeAsO (RE = rare earth elements) and (Ba,Sr)Fe_2As_2. However the inter FeAs-layer spacing in the new compound is greatly enlarged. The temperature dependence of resistivity exhibits a weak upturn in the low temperature region, but a metallic behavior was observed above about 60 K. The magnetic susceptibility shows also a non-monotonic behavior. Interestingly, the well-known resistivity anomaly which was discovered in all other parent compounds, such as REFeAsO, (Ba,Sr)Fe_2As_2 and (Sr,Ca,Eu)FeAsF and associated with the Spin-Density-Wave (SDW)/structural transition has not been found in the new system either on the resistivity data or the magnetization data. This could be induced by the large spacing distance between the FeAs-planes, therefore the antiferromagnetic correlation between the moments of Fe ions in neighboring FeAs-layers cannot be established. Alternatively it can also be attributed to the self-doping effect between Fe and Sc ions. The Hall coefficient R_H is negative but strongly temperature dependent in wide temperature region, which indicates the dominance of electrical conduction by electron-like charge carriers and probably a multi-band effect or a spin related scattering effect. It is found that the magnetoresistance cannot be described by the Kohler's rule, which gives further support to above arguments.Comment: 5 pages, 5 figures, some contents added, and one figure adde

    Spin-orbit scattering in quantum diffusion of massive Dirac fermions

    Get PDF
    Effect of spin-orbit scattering on quantum diffusive transport of two-dimensional massive Dirac fermions is studied by the diagrammatic technique. The quantum diffusion of massive Dirac fermions can be viewed as a singlet Cooperon in the massless limit and a triplet Cooperon in the large-mass limit. The spin-orbit scattering behaves like random magnetic fields only to the triplet Cooperon, and suppresses the weak localization of Dirac fermions in the large-mass regime. This behavior suggests an experiment to detect the weak localization of bulk subbands in topological insulator thin films, in which a narrowing of the cusp of the negative magnetoconductivity is expected after doping heavy-element impurities. Finally, a detailed comparison between the conventional two-dimensional electrons and Dirac fermions is presented for impurities of orthogonal, symplectic, and unitary symmetries.Comment: 5 pages, 3 figures, 2 tables. To be submitted, comments are welcom

    Hall effect and magnetoresistance in single crystals of NdFeAsO1x_{1-x}Fx_{x}

    Full text link
    Hall effect and magnetoresistance have been measured on single crystals of NdFeAsO1xFxNdFeAsO_{1-x}F_{x} with x = 0 (TcT_c = 0 K) and x = 0.18 (TcT_c = 50 K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature dependence were found below about 150 K. The magnetoresistance was found to be as large as 30% at 15 K at a magnetic field of 9 T. From the transport data we found that the transition near 155 K was accomplished in two steps: first one occurs at 155 K which may be associated with the structural transition, the second one takes place at about 140 K which may correspond to the spin-density wave like transition. In the superconducting sample with TcT_c = 50 K, it is found that the Hall coefficient also reveals a strong temperature dependence with a negative sign. But the magnetoresistance becomes very weak and does not satisfy the Kohler's scaling law. These dilemmatic results (strong Hall effect and very weak magnetoresistance) prevent to understand the normal state electric conduction by a simple multi-band model by taking account the electron and hole pockets. Detailed analysis further indicates that the strong temperature dependence of RHR_H cannot be easily understood with the simple multi-band model either. A picture concerning a suppression to the density of states at the Fermi energy in lowering temperature is more reasonable. A comparison between the Hall coefficient of the undoped sample and the superconducting sample suggests that the doping may remove the nesting condition for the formation of the SDW order, since both samples have very similar temperature dependence above 175 K.Comment: 8 pages, 9 figure
    corecore