31,562 research outputs found
Direction-of-Arrival Estimation Based on Sparse Recovery with Second-Order Statistics
Traditional direction-of-arrival (DOA) estimation techniques perform Nyquist-rate sampling of the received signals and as a result they require high storage. To reduce sampling ratio, we introduce level-crossing (LC) sampling which captures samples whenever the signal crosses predetermined reference levels, and the LC-based analog-to-digital converter (LC ADC) has been shown to efficiently sample certain classes of signals. In this paper, we focus on the DOA estimation problem by using second-order statistics based on the LC samplings recording on one sensor, along with the synchronous samplings of the another sensors, a sparse angle space scenario can be found by solving an minimization problem, giving the number of sources and their DOA's. The experimental results show that our proposed method, when compared with some existing norm-based constrained optimization compressive sensing (CS) algorithms, as well as subspace method, improves the DOA estimation performance, while using less samples when compared with Nyquist-rate sampling and reducing sensor activity especially for long time silence signal
A competing order scenario of two-gap behavior in hole doped cuprates
Angle-dependent studies of the gap function provide evidence for the
coexistence of two distinct gaps in hole doped cuprates, where the gap near the
nodal direction scales with the superconducting transition temperature ,
while that in the antinodal direction scales with the pseudogap temperature. We
present model calculations which show that most of the characteristic features
observed in the recent angle-resolved photoemission spectroscopy (ARPES) as
well as scanning tunneling microscopy (STM) two-gap studies are consistent with
a scenario in which the pseudogap has a non-superconducting origin in a
competing phase. Our analysis indicates that, near optimal doping,
superconductivity can quench the competing order at low temperatures, and that
some of the key differences observed between the STM and ARPES results can give
insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig
Interplay between superconductivity and itinerant magnetism in underdoped BaKFeAs ( 0.2) probed by the response to controlled point-like disorder
The response of superconductors to controlled introduction of point-like
disorder is an important tool to probe their microscopic electronic collective
behavior. In the case of iron-based superconductors (IBS), magnetic
fluctuations presumably play an important role in inducing high temperature
superconductivity. In some cases, these two seemingly incompatible orders
coexist microscopically. Therefore, understanding how this unique coexistence
state is affected by disorder can provide important information about the
microscopic mechanisms involved. In one of the most studied pnictide family,
hole-doped BaKFeAs (BaK122), this coexistence occurs over a
wide range of doping levels, 0.16~~0.25. We used
relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs
that act as efficient point-like scattering centers. Upon increasing dose of
irradiation, the superconducting transition temperature decreases
dramatically. In the absence of nodes in the order parameter this provides a
strong support for a sign-changing pairing. Simultaneously, in the
normal state, there is a strong violation of the Matthiessen's rule and a
decrease (surprisingly, at the same rate as ) of the magnetic transition
temperature , which indicates the itinerant nature of the long-range
magnetic order. Comparison of the hole-doped BaK122 with electron-doped
Ba(FeCo)As (FeCo122) with similar 110~K,
0.02, reveals significant differences in the normal states, with no
apparent Matthiessen's rule violation above on the electron-doped
side. We interpret these results in terms of the distinct impact of impurity
scattering on the competing itinerant antiferromagnetic and
superconducting orders
SU(3) Spin-Orbit Coupling in Systems of Ultracold Atoms
Motivated by the recent experimental success in realizing synthetic
spin-orbit coupling in ultracold atomic systems, we consider N-component atoms
coupled to a non-Abelian SU(N) gauge field. More specifically, we focus on the
case, referred to here as "SU(3) spin-orbit-coupling," where the internal
states of three-component atoms are coupled to their momenta via a matrix
structure that involves the Gell-Mann matrices (in contrast to the Pauli
matrices in conventional SU(2) spin-orbit-coupled systems). It is shown that
the SU(3) spin-orbit-coupling gives rise to qualitatively different phenomena
and in particular we find that even a homogeneous SU(3) field on a simple
square lattice enables a topologically non-trivial state to exist, while such
SU(2) systems always have trivial topology. In deriving this result, we first
establish an exact equivalence between the Hofstadter model with a 1/N Abelian
flux per plaquette and a homogeneous SU(N) non-Abelian model. The former is
known to have a topological spectrum for N>2, which is thus inherited by the
latter. It is explicitly verified by an exact calculation for N=3, where we
develop and use a new algebraic method to calculate topological indices in the
SU(3) case. Finally, we consider a strip geometry and establish the existence
of three gapless edge states -- the hallmark feature of such an SU(3)
topological insulator.Comment: 4.2 pages, 1 figur
Critical currents, flux-creep activation energy and potential barriers for the vortex motion from the flux creep experiments
We present an experimental study of thermally activated flux creep in a
superconducting ring-shaped epitaxial YBCO film as well as a new way of
analyzing the experimental data. The measurements were made in a wide range of
temperatures between 10 and 83 K. The upper temperature limit was dictated by
our experimental technique and at low temperatures we were limited by a
crossover to quantum tunneling of vortices. It is shown that the experimental
data can very well be described by assuming a simple thermally activated
hopping of vortices or vortex bundles over potential barriers, whereby the
hopping flux objects remain the same for all currents and temperatures. The new
procedure of data analysis also allows to establish the current and temperature
dependencies of the flux-creep activation energy U, as well as the temperature
dependence of the critical current Ic, from the flux-creep rates measured at
different temperatures. The variation of the activation energy with current,
U(I/Ic), is then used to reconstruct the profile of the potential barriers in
real space.Comment: 12 pages, 13 Postscript figures, Submitted to Physical Review
Non-Newtonian gravity in finite nuclei
In this talk, we report our recent study of constraining the non-Newtonian
gravity at femtometer scale. We incorporate the Yukawa-type non-Newtonian
gravitational potential consistently to the Skyrme functional form using the
exact treatment for the direct contribution and density-matrix expansion method
for the exchange contribution. The effects from the non-Newtonian potential on
finite nuclei properties are then studied together with a well-tested Skyrme
force. Assuming that the framework without non-Newtonian gravity can explain
the binding energies and charge radii of medium to heavy nuclei within 2%
error, we set an upper limit for the strength of the non-Newtonian
gravitational potential at femtometer scale.Comment: Talk given at the 11th International Conference on Nucleus-Nucleus
Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear
in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS
Intrinsic Percolative Superconductivity in KxFe2-ySe2 Single Crystals
Magnetic field penetration and magnetization hysteresis loops (MHLs) have
been measured in KxFe2-ySe2 single crystals. The magnetic field penetration
shows a two-step feature with a very small full-magnetic-penetration field
(Hp1= 300 Oe at 2 K), and accordingly the MHL exhibits an abnormal vanishing of
the central peak near zero field below 13 K. The width of the MHL in KxFe2-ySe2
at the same temperature is in general much smaller than that measured in the
relatives Ba0.6K0.4Fe2As2 and Ba(Fe0.92Co0.08)2As2, and the MHLs in the latter
two samples show the normal central peak near zero field. All these anomalies
found in KxFe2-ySe2 can be understood in the picture that the sample is
percolative with weakly coupled superconducting islands.Comment: 5 page, 4 figure
Bosonization Theory of Excitons in One-dimensional Narrow Gap Semiconductors
Excitons in one-dimensional narrow gap semiconductors of anti-crossing
quantum Hall edge states are investigated using a bosonization method. The
excitonic states are studied by mapping the problem into a non-integrable
sine-Gordon type model. We also find that many-body interactions lead to a
strong enhancement of the band gap. We have estimated when an exciton
instability may occur.Comment: 4pages, 1 figure, to appear in Phys. Rev. B Brief Report
Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes
In this paper, we study the phase structure and equilibrium state space
geometry of charged topological Gauss-Bonnet black holes in -dimensional
anti-de Sitter spacetime. Several critical points are obtained in the canonical
ensemble, and the critical phenomena and critical exponents near them are
examined. We find that the phase structures and critical phenomena drastically
depend on the cosmological constant and dimensionality . The
result also shows that there exists an analogy between the black hole and the
van der Waals liquid gas system. Moreover, we explore the phase transition and
possible property of the microstructure using the state space geometry. It is
found that the Ruppeiner curvature diverges exactly at the points where the
heat capacity at constant charge of the black hole diverges. This black hole is
also found to be a multiple system, i.e., it is similar to the ideal gas of
fermions in some range of the parameters, while to the ideal gas of bosons in
another range.Comment: 17 pages, 8 figures, 3 table
- …