584 research outputs found
Interaction of Na+ Ion With the Solvated Gramicidin A Transmembrane Channel
A 6-12-1 atom-atom pair potential for the interaction of a Na+ion with gramicidin A (GA) has been derived from ab initio SCF calculations on the intermolecular interaction energies between one Na+ion and GA molecular fragments. This potential has been used to obtain iso-energy maps, which in turn provide an energy profile of the Na+ion in the GA channel. We have applied this potential in Monte Carlo simulations in order to obtain i) the number of water molecules which can be placed inside the GA channel and ii) the hydration structures of the GA channel in the presence of one Na+ion
Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress
This is the peer reviewed version of the following article: Vu, H. S., Roth, M. R., Tamura, P., Samarakoon, T., Shiva, S., Honey, S., Lowe, K., Schmelz, E. A., Williams, T. D. and Welti, R. (2014), Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress. Physiol Plantarum, 150: 517â528. doi:10.1111/ppl.12132, which has been published in final form at http://doi.org/10.1111/ppl.12132. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses
Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics
Background:
Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer.
Methodology/Principal Findings:
Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer.
Conclusions/Significance:
Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy
Exploring the Potential Effect of Phospholipase A2 Antibody to Extend Beef Shelf-Life in a Beef Liposome Model System
Objective: The objective of this study was to utilize a beef liposome model system to investigate if phospholipase-A2 antibody (aPLA2) can be used to inhibit phospholipase-A2 (PLA2) activity to potentially improve beef shelf-life.
Study Description: Phospholipids (PL) from 10 U.S. Department of Agriculture choice beef striploin steaks were extracted and split into six treatments: PL (25 mg of PL); aPLA10 (PL + 25 ”g of aPLA2); aPLA20 (PL + 50 ”g of aPLA2); PLA2 (PL + 10 ”g of PLA2); PLA2+aPLA10 (PL + PLA2 + aPLA10); and PLA2+aPLA20 (PL + PLA2 + aPLA20). The model system was under retail display at 39°F and 2300 lux for 7 days. At day 0, aliquots were taken for PL profiling and product ion analysis. At days 0, 1, 4, and 7, aliquots were taken for lipid oxidation analysis.
Results: At day 7 of display, PLA2, PLA2+aPLA10, and PLA2+aPLA20 treatments had greater lipid oxidation (P \u3c 0.01) compared to the samples without PLA2. This trend was seen in the other retail display periods. Interestingly, day-7 aPLA10 and aPLA20 had less lipid oxidation than day-7 PL and less oxidation than day-4 PLA2 (P \u3c 0.05). The PL profile analysis showed clear differences between treatments with or without the addition of PLA2. The PLA2 treatments showed greater relative percent of total PL degradation products (P \u3c 0.01) than treatments without PLA2. The PLA2 treatments had less relative percent of total ether-linked phosphatidylcholine (ePC) than treatments without PLA2 (P \u3c 0.01). It appears that aPLA2 had no effect on inhibiting PLA2 hydrolysis as there was no difference (P \u3e 0.10) between PLA2 and aPLA+PLA2 treatments in relative percent of total ePC, phosphatidylcholine (PC), or in PL degradation products.
The Bottom Line: Phospholipase-A2 significantly alters beef phospholipids to a composition that is potentially susceptible to lipid oxidation. At day-7 of retail display, there is significant lipid oxidation from PLA2 added treatments, yet the aPLA2 only treatments seem to present an antioxidant effect. Effectively inhibiting PLA2 activity can potentially improve beef shelf-life stability
Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests
The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (â38%), abundance (â53%) and biomass (â57%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches
Lipid modulation contributes to heat stress adaptation in peanut
At the cellular level, membrane damage is a fundamental cause of yield loss at high temperatures (HT). We report our investigations on a subset of a peanut (Arachis hypogaea) recombinant inbred line population, demonstrating that the membrane lipid remodeling occurring at HT is consistent with homeoviscous adaptation to maintain membrane fluidity. A major alteration in the leaf lipidome at HT was the reduction in the unsaturation levels, primarily through reductions of 18:3 fatty acid chains, of the plastidic and extra-plastidic diacyl membrane lipids. In contrast, levels of 18:3-containing triacylglycerols (TGs) increased at HT, consistent with a role for TGs in sequestering fatty acids when membrane lipids undergo remodeling during plant stress. Polyunsaturated acyl chains from membrane diacyl lipids were also sequestered as sterol esters (SEs). The removal of 18:3 chains from the membrane lipids decreased the availability of susceptible molecules for oxidation, thereby minimizing oxidative damage in membranes. Our results suggest that transferring 18:3 chains from membrane diacyl lipids to TGs and SEs is a key feature of lipid remodeling for HT adaptation in peanut. Finally, QTL-seq allowed the identification of a genomic region associated with heat-adaptive lipid remodeling, which would be useful for identifying molecular markers for heat tolerance
Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at
the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the
Roman Pot detectors placed as close as seven times the transverse beam size
(sbeam) from the outgoing beams. After careful study of the accelerator optics
and the detector alignment, |t|, the square of four-momentum transferred in the
elastic scattering process, has been determined with an uncertainty of d t =
0.1GeV p|t|. In this letter, first results of the differential cross section
are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential
cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an
exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2,
followed by a significant diffractive minimum at |t| =
(0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the
cross-section exhibits a power law behaviour with an exponent of -7.8_\pm}
0.3stat{\pm}0.1syst. When compared to predictions based on the different
available models, the data show a strong discriminative power despite the small
t-range covered.Comment: 12pages, 5 figures, CERN preprin
- âŠ