233 research outputs found
A prova de exercício cárdio-pulmonar e o prognóstico cirúrgico do cancro do pulmão
Resumo: Os autores procuram dar mais um contributo para a avaliação pré-operatória dos doentes com carcinoma de não pequenas células que vão ser sujeitos a cirurgia de ressecção pulmonar.Trata-se de um estudo prospectivo onde foi avaliado o resultado da cirurgia em termos de complicações ocorridas nos 30 dias a seguir à operação. Os autores definiram cada uma das complicações (óbito, enfarte do miocárdio, insuficiências respiratória, cardÃaca e renal, embolia pulmonar, pneumonia e septicemia) e ainda analisaram 3 dessas complicações em separado (óbito, enfarte do miocárdio e insuficiência respiratória), as quais designaram por âfraco resultadoâ.Antes da cirurgia, foram avaliados 99 doentes (34 pneumectomias, 56 lobectomias, 6 bilobectomias e 3 ressecções atÃpicas) com espirometria (FEV1 em litros) e consumo de oxigénio no exercÃcio máximo (VO2peak). Só 26 doentes tinham valores funcionais considerados borderline (FEV1 < 1,5 litros para lobectomia e < 2,0 litros para pneumectomia). Nos resultados apresentados observámos os seguintes valores médios: FEV1=2,06 litros; FEV1=80,4% do valor teórico; VO2peak=18,8 ml/kg/min ou 88,3% do valor teórico. Só existiram 4 óbitos (4%) e 21 doentes tiveram uma ou mais das complicações referenciadas.Os autores não encontraram relação significativa entre as complicações pós-operatórias e o FEV1 em litros. Verificaram ainda que o VO2peak em percentagem do valor teórico previa melhor um âfraco resultadoâ do que o mesmo parâmetro em valor absoluto.Em relação aos óbitos, um dos doentes tinha sido submetido a quimioterapia, o que dificultou a avaliação do desfecho. Nos restantes 3 óbitos, todos os doentes tinham um VO2peak < 62% do valor teórico. Dois dos 3 doentes com VO2peak < 50% tiveram um âfraco resultadoâ. Com VO2peak > 75% só 3 em 20 doentes é que tiveram um âfraco resultadoâ.Apesar de reconhecerem a necessidade de mais e maiores estudos, os autores concluem que VO2peak é importante para prever complicações como óbito, enfarte do miocárdio ou insuficiência respiratória, principalmente se é referido em percentagem do valor teórico. O limite âseguroâ situar-se-ia entre 50 e 60% do valor previsto
Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments
We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting ordering temperature T-c=40 K. The incommensurability value is consistent with a hole doping of n(h)approximate to 1>8 but in contrast to nonsuperoxygenated La2-xSrxCuO4 with hole doping close to n(h)approximate to 18 the magnetic-order parameter is not field dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the spin and charge ordered "stripe" compounds La1.48Nd0.40Sr0.12CuO4 and La7/8Ba1/8CuO4
Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}
We report neutron scattering measurements of the structure and magnetism of
stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single
crystal sample demonstrate that the excess oxygen dopants form a
three-dimensional ordered superlattice within the interstitial regions of the
crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast
rate of cooling can freeze-in the disordered-oxygen state. Hence, by
controlling the cooling rate, the degree of dopant disorder in our
La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched
disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same
time, the quenched disorder enhances the spin density wave order in a manner
analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR
Dispersion of a single hole in the t-J model
The dispersion of a single hole in the t-J model obtained by the exact result
of 32 sites and the results obtained by self-consistent Born approximation and
the Green function Monte Carlo method can be simply derived by a mean-field
theory with d-RVB and antiferromagnetic order parameters. In addition, it
offers a simple explanation for the difference observed between those results.
The presence of the extended van Hove region at (pi,0) is a consequence of the
d-RVB pairing independenct of the antiferromagnetic order. Results including t'
and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure
Hubbard model versus t-J model: The one-particle spectrum
The origin of the apparent discrepancies between the one-particle spectra of
the Hubbard and t-J models is revealed: Wavefunction corrections, in addition
to the three-site terms, should supplement the bare t-J. In this way a
quantitative agreement between the two models is obtained, even for the
intermediate- values appropriate for the high-Tc cuprate superconductors.
Numerical results for clusters of up to 20 sites are presented. The momentum
dependence of the observed intensities in the photoemission spectra of
Sr2CuO2Cl2 are well described by this complete strong-coupling approach.Comment: 4 two-column RevTeX pages, including 4 Postscript figures. Uses epsf.
Accepted for publication in Physical Review B, Rapid Communicatio
Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO(4+y)
We report a detailed study, using neutron scattering, transport and
magnetization measurements, of the interplay between superconducting (SC) and
spin density wave (SDW) order in La2CuO(4+y). Both kinds of order set in below
the same critical temperature. However, the SDW order grows with applied
magnetic field, whereas SC order is suppressed. Most importantly, the field
dependence of the SDW Bragg peak intensity has a cusp at zero field, as
predicted by a recent theory of competing SDW and SC order. This leads us to
conclude that there is a repulsive coupling between the two order parameters.
The question of whether the two kinds of order coexist or microscopically phase
separate is discussed.Comment: Version accepted for publication in Phys. Rev. B. Improved discussion
in connection with the muSR result
Photoemission spectra of : a theoretical analysis
Recent angle resolved photoemission (ARPES) results for the insulating
cuprate have provided the first experimental data
which can be directly compared to the (theoretically) well--studied problem of
a single hole propagating in an antiferromagnet. The ARPES results reported a
small bandwidth, providing evidence for the existence of strong correlations in
the cuprates. However, in the same experiment some discrepancies with the
familiar 2D model were also observed. Here we discuss a comparison
between the ARPES results and the quasiparticle dispersion of both (i) the
Hamiltonian and (ii) the three--band Hubbard model in the
strong--coupling limit. Both model Hamiltonians show that the experimentally
observed one--hole band structure can be approximately reproduced using
reasonable values for , or the direct oxygen hopping amplitude .Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and
figures have been uuencoded
Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering
We report a neutron and Raman scattering study of a single-crystal of
La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic
neutron scattering measurements show the presence of two phases, corresponding
to the two edges of the first miscibility gap, all the way up to 300 K. An
additional oxygen redistribution, driven by electronic energies, is identified
at 250 K in Raman scattering (RS) experiments by the simultaneous onset of
two-phonon and two-magnon scattering, which are fingerprints of the insulating
phase. Elastic neutron scattering measurements show directly an
antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening
of the superconducting gap manifests itself as a redistribution of electronic
Raman scattering below the superconducting transition temperature, T_c = 24K. A
pronounced temperature-dependent suppression of the intensity of the (100)
magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to
a change of relative volume fraction of superconducting and antiferromagnetic
phases with decreasing temperature caused by a form of a superconducting
proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
Holes in the t-J_z model: a thorough study
The t-J_z model is the strongly anisotropic limit of the t-J model which
captures some general properties of the doped antiferromagnets (AF). The
absence of spin fluctuations simplifies the analytical treatment of hole motion
in an AF background and allows us to calculate the single- and two-hole spectra
with high accuracy using regular diagram technique combined with real-space
approach. At the same time, numerical studies of this model via exact
diagonalization (ED) on small clusters show negligible finite size effects for
a number of quantities, thus allowing a direct comparison between analytical
and numerical results. Both approaches demonstrate that the holes have tendency
to pair in the p- and d-wave channels at realistic values of t/J. The
interactions leading to pairing and effects selecting p and d waves are
thoroughly investigated. The role of transverse spin fluctuations is considered
using perturbation theory. Based on the results of the present study, we
discuss the pairing problem in the realistic t-J-like model. Possible
implications for preformed pairs formation and phase separation are drawn.Comment: 21 pages, 15 figure
Spin polaron damping in the spin-fermion model for cuprate superconductors
A self-consistent, spin rotational invariant Green's function procedure has
been developed to calculate the spectral function of carrier excitations in the
spin-fermion model for the CuO2 plane. We start from the mean field description
of a spin polaron in the Mori-Zwanzig projection method. In order to determine
the spin polaron lifetime in the self-consistent Born approximation, the
self-energy is expressed by an irreducible Green's function. Both, spin polaron
and bare hole spectral functions are calculated. The numerical results show a
well pronounced quasiparticle peak near the bottom of the dispersion at
(pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather
large damping away from the minimum and an asymmetry of the spectral function
with respect to the antiferromagnetic Brillouin zone. These findings are in
qualitative agreement with photoemission data for undoped cuprates. The direct
oxygen-oxygen hopping is responsible for a more isotropic minimum at
(pi/2,pi/2).Comment: 18 pages, 13 figure
- …