881 research outputs found
Implementing Compositional Analysis Using Intersection Types With Expansion Variables
AbstractA program analysis is compositional when the analysis result for a particular program fragment is obtained solely from the results for its immediate subfragments via some composition operator. This means the subfragments can be analyzed independently in any order. Many commonly used program analysis techniques (in particular, most abstract interpretations and most uses of the Hindley/Milner type system) are not compositional and require the entire text of a program for sound and complete analysis.System
I
is a recent type system for the pure λ-calculus with intersection types and the new technology of expansion variables. System
I
supports compositional analysis because it has the principal typings property and an algorithm based on the new technology of β-unification has been developed that finds these principal typings. In addition, for each natural number k, typability in the rank-k restriction of System
I
is decidable, so a complete and terminating analysis algorithm exists for the rank-k restriction.This paper presents new understanding that has been gained from working with multiple implementations of System
I
and β-unification-based analysis algorithms. The previous literature on System
I
presented the type system in a way that helped in proving its more important theoretical properties, but was not as easy to follow as it could be. This paper provides a presentation of many aspects of System
I
that should be clearer as well as a discussion of important implementation issues
Unitarity of Quantum Theory and Closed Time-Like Curves
Interacting quantum fields on spacetimes containing regions of closed
timelike curves (CTCs) are subject to a non-unitary evolution . Recently, a
prescription has been proposed, which restores unitarity of the evolution by
modifying the inner product on the final Hilbert space. We give a rigorous
description of this proposal and note an operational problem which arises when
one considers the composition of two or more non-unitary evolutions. We propose
an alternative method by which unitarity of the evolution may be regained, by
extending to a unitary evolution on a larger (possibly indefinite) inner
product space. The proposal removes the ambiguity noted by Jacobson in
assigning expectation values to observables localised in regions spacelike
separated from the CTC region. We comment on the physical significance of the
possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D.
Some changes are made to expand our discussion of Anderson's Proposal for
restoring unitarit
In-situ epitaxial growth of superconducting La-based bilayer cuprate thin films
We investigate the epitaxial growth of bilayer cuprate La2CaCu2O6+\delta
using pure ozone as an oxidant, and find that even the crystal with parent
composition without cation substitution can show metallic behavior with the aid
of epitaxial strain effect. The hole concentration is controlled simply by
excess-oxygen doping, and the films grown under the optimum conditions exhibit
superconductivity below 30 K. This is the first result on the superconductivity
of bilayer La2CaCu2O6+\delta induced purely by the excess oxygen.Comment: 5 pages, 3 figures, To appear in Phys. Rev. B, Rapid Communication
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model
Slave boson calculations have been carried out in the three-band tJ model for
the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode
phonons. Phonon-induced Van Hove nesting leads to a phase separation between a
hole-doped domain and a (magnetic) domain near half filling, with long-range
Coulomb forces limiting the separation to a nanoscopic scale. Strong
correlation effects pin the Fermi level close to, but not precisely at the Van
Hove singularity (VHS), which can enhance the tendency to phase separation. The
resulting dispersions have been calculated, both in the uniform phases and in
the phase separated regime. In the latter case, distinctly different
dispersions are found for large, random domains and for regular (static)
striped arrays, and a hypothetical form is presented for dynamic striped
arrays. The doping dependence of the latter is found to provide an excellent
description of photoemission and thermodynamic experiments on pseudogap
formation in underdoped cuprates. In particular, the multiplicity of observed
gaps is explained as a combination of flux phase plus charge density wave (CDW)
gaps along with a superconducting gap. The largest gap is associated with VHS
nesting. The apparent smooth evolution of this gap with doping masks a
crossover from CDW-like effects near optimal doping to magnetic effects (flux
phase) near half filling. A crossover from large Fermi surface to hole pockets
with increased underdoping is found. In the weakly overdoped regime, the CDW
undergoes a quantum phase transition (), which could be obscured
by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes,
esp. in Sect. 3, Figs 1-4,6 replace
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Patterns of eye-movements when Male and Female observers judge female attractiveness, body fat and waist-to-hip ratio
Behavioural studies of the perceptual cues for female physical attractiveness have suggested two potentially important features; body fat distribution (the waist-to-hip ratio or WHR) and overall body fat (often estimated by the body mass index or BMI). However none of these studies tell us directly which regions of the stimulus images inform observers’ judgments. Therefore, we recorded the eye-movements of 3 groups of 10 male observers and 3 groups of 10 female observers, when they rated a set of 46 photographs of female bodies. The first sets of observers rated the images for attractiveness, the second sets rated for body fat and the third sets for WHR. If either WHR and/or body fat are used to judge attractiveness, then observers rating attractiveness should look at those areas of the body which allow assessment of these features, and they should look in the same areas when they are directly asked to estimate WHR and body fat. So we are able to compare the fixation patterns for the explicit judgments with those for attractiveness judgments, and infer which features were used for attractiveness. Prior to group analysis of the eye-movement data, the locations of individual eye fixations were transformed into a common reference space to permit comparisons of fixation density at high resolution across all stimuli. This manipulation allowed us to use spatial statistical analysis techniques to show: 1) Observers’ fixations for attractiveness and body fat clustered in the central and upper abdomen and chest, but not the pelvic or hip areas, consistent with the finding that WHR had little influence over attractiveness judgments. 2) The pattern of fixations for attractiveness ratings was very similar to the fixation patterns for body fat judgments. 3) The fixations for WHR ratings were significantly different from those for attractiveness and body fat
Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at GeV
Identified mid-rapidity particle spectra of , , and
from 200 GeV p+p and d+Au collisions are reported. A
time-of-flight detector based on multi-gap resistive plate chamber technology
is used for particle identification. The particle-species dependence of the
Cronin effect is observed to be significantly smaller than that at lower
energies. The ratio of the nuclear modification factor () between
protons and charged hadrons () in the transverse momentum
range GeV/c is measured to be
(stat)(syst) in minimum-bias collisions and shows little
centrality dependence. The yield ratio of in minimum-bias d+Au
collisions is found to be a factor of 2 lower than that in Au+Au collisions,
indicating that the Cronin effect alone is not enough to account for the
relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from
transverse momentum 1.8 GeV/c to 3. GeV/
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
- …