478 research outputs found

    Reproduction of Black Drum, Pogonias cromis, from the Chesapeake Bay Region

    Get PDF
    Ovaries of black drum, Pogonias cromis, collected from the Chesapeake Bay region in 1992, were used to describe reproductive strategy and fecundity. Histological examination showed that black drum spawn in the Chesapeake Bay region from April through early June. Distributions of oocyte diameter showed distinct oocyte-developmental groups indicating that Chesapeake Bay black drum are group-synchronous batch spawners. Female black drum are extremely fecund ranging from 414,000 to 3,736,000 hydrated oocytes (mean = 1,389,000) per batch with a spawning periodicity of 3.8 days. Estimates of spawning strategy, spawning periodicity, and batch fecundity for black drum from the Chesapeake Bay region were similar to reported estimates from the Gulf of Mexico

    Yield-Per-Recruit Analysis for Black Drum, Pogonias cromis, Along the East Coast of the United States and Management Strategies for Chesapeake Bay

    Get PDF
    Black drum, Pogonias cromis along the U.S. East Coast is subject to commercial and recreational harvest. However, prior to this study no modeling had been undertaken to examine the potential for overfishing in the Chesapeake Bay region. We present evidence from yield-per-recruit models that growth overfishing of black drum is unlikely under current fishing practices in this region. Particular attention was given to fishing practices in the Chesapeake Bay region where old, large fish predominate in the commercial and recreational catches (mean age=26 years: mean total length=108.4 cm; mean weight 22.1 kg). Yield-per-recruit model results showed that growth overfishing was unlikely in the Chesapeake Bay region under all but the lowest estimates of natural mortality (M=0.02-0.04). Such extreme low values of M predict potential life span of 200 years and were dismissed as improbable-the oldest age recorded for this species is 59 years. Additionally, biomass-per-recruit model results indicated a 42-59% decrease to current biomass from the unfished stock. The apparent age-specific migration of this stock argues for protection of young fish that have dominated the catch in Northeast Florida. Modeling indicated that growth overfishing could result from heavy fishing on these young ages and would all but eliminate this resource of the northern fishery

    Implementing an ecosystem oceanography program to increase capacity and preparedness for dynamic ocean management and fishery challenges

    Get PDF
    Building resilience in coastal resources and related communities is improved by a holistic ecosystem research approach for integrating socioecological system components; a key challenge in this process is capturing dynamic interactions between components. We present an application of ecosystem oceanography to address goals of marine conservation and management, including climate readiness and supporting a blue economy. Treating the ecosystem as the sample unit is fundamental to our research program. Specifically, spatiotemporal structure of relationships among taxa themselves is the study subject, not the individual members. Our approach outlines four steps toward successful implementation: 1) Build a conceptual ecosystem-oceanography model informed by previous science and human dimensions research to test hypotheses and identify gaps in our understanding; 2) Design survey and adaptive monitoring efforts, including data sharing protocols, to capture the spatiotemporal processes of ecosystem structure; 3) Use diet data and spatiotemporal variability in trophic interactions to quantify processes influencing ecosystem function, including persistent hotspots of abundance, biodiversity, and trophic transfer; 4) Link empirically-determined processes to improve parameterization of biophysical models to enable evaluation of ecosystem structure and functionality retrospectively and prospectively. Accomplishing these objectives requires a transdisciplinary team and will enable evaluation of specific management goals, develop indicators for tracking progress towards meeting them, and carry out scenario evaluation under near-term and long-term scenarios that explore key uncertainties (e.g., future climate and policy directions). We apply this four-step approach to identify key drivers for recent ecosystem and fishery surprises in the California Current Ecosystem. We propose this approach offers a means for anticipating future ecosystem states and increasing preparedness and capacity to overcome fishery surprises, and in doing so supporting the development of management approaches that are robust to uncertainty

    High site-fidelity in common bottlenose dolphins despite low salinity exposure and associated indicators of compromised health

    Get PDF
    Funding for this work was provided by the National Fish and Wildlife Foundation Gulf Environmental Benefit Fund (https://www.nfwf.org/gulf-environmental-benefit-fund; contract number 57223) to CS under subcontracts to Abt Associates Inc.More than 2,000 common bottlenose dolphins (Tursiops truncatus) inhabit the Barataria Bay Estuarine System in Louisiana, USA, a highly productive estuary with variable salinity driven by natural and man-made processes. It was unclear whether dolphins that are long-term residents to specific areas within the basin move in response to fluctuations in salinity, which at times can decline to 0 parts per thousand in portions of the basin. In June 2017, we conducted health assessments and deployed satellite telemetry tags on dolphins in the northern portions of the Barataria Bay Estuarine System Stock area (9 females; 4 males). We analyzed their fine-scale movements relative to modeled salinity trends compared to dolphins tagged near the barrier islands (higher salinity environments) from 2011 to 2017 (37 females; 21 males). Even though we observed different movement patterns among individual dolphins, we found no evidence that tagged dolphins moved coincident with changes in salinity. One tagged dolphin spent at least 35 consecutive days, and 75 days in total, in salinity under 5 parts per thousand. Health assessments took place early in a seasonal period of decreased salinity. Nonetheless, we found an increased prevalence of skin lesions, as well as abnormalities in serum biochemical markers and urine:serum osmolality ratios for dolphins sampled in lower salinity areas. This study provides essential information on the likely behavioral responses of dolphins to changes in salinity (e.g., severe storms or from the proposed Mid-Barataria Sediment Diversion project) and on physiological markers to inform the timing and severity of impacts from low salinity exposure.Publisher PDFPeer reviewe

    An Elusive Z' Coupled to Beauty

    Full text link
    By extending the standard gauge group to SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X with X charges carried only by the third family we accommodate the LEP measurement of R_b and predict a potentially measurable discrepancy in A_{FB}^{b} in e^+e^- scattering and that D^0\bar{D}^0 mixing may be near its experimental limit. The Z', which explicitly violates the GIM mechanism, can nevertheless be naturally consistent with FCNC constraints. Direct detection of the Z' is possible but challenging.Comment: 12 pages, plus 1 Postscript figure, uses revtex, Discussion of FCNC extende

    Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex- and class-structured population model

    Get PDF
    Field studies documented increased mortality, adverse health effects, and reproductive failure in common bottlenose dolphins Tursiops truncatus following the Deepwater Horizon (DWH) oil spill. In order to determine the appropriate type and amount of restoration needed to compensate for losses, the overall extent of injuries to dolphins had to be quantified. Simply counting dead individuals does not consider long-term impacts to populations, such as the loss of future reproductive potential from mortality of females, or the chronic health effects that continue to compromise survival long after acute effects subside. Therefore, we constructed a sex- and agestructured model of population growth and included additional class structure to represent dolphins exposed and unexposed to DWH oil. The model was applied for multiple stocks to predict injured population trajectories using estimates of post-spill survival and reproductive rates. Injured trajectories were compared to baseline trajectories that were expected had the DWH incident not occurred. Two principal measures of injury were computed: (1) lost cetacean years (LCY); the difference between baseline and injured population size, summed over the modeled time period, and (2) time to recovery; the number of years for the stock to recover to within 95% of baseline. For the dolphin stock in Barataria Bay, Louisiana, the estimated LCY was substantial: 30 347 LCY (95% CI: 11 511 to 89 746). Estimated time to recovery was 39 yr (95% CI: 24 to 80). Similar recovery timelines were predicted for stocks in the Mississippi River Delta, Mississippi Sound, Mobile Bay and the Northern Coastal Stock.Publisher PDFPeer reviewe

    Operationalizing ensemble models for scientific advice to fisheries management

    Get PDF
    This paper explores the possibility of using the ensemble modelling paradigm to fully capture assessment uncertainty and improve the robustness of advice provision. We identify and discuss advantages and challenges of ensemble modelling approaches in the context of scientific advice. There are uncertainties associated with every phase in the stock assessment process: data collection, assessment model choice, model assumptions, interpretation of risk, up to the implementation of management advice. Additionally, the dynamics of fish populations are complex, and our incomplete understanding of those dynamics and limited observations of important mechanisms, necessitate that models are simpler than nature. The aim is for the model to capture enough of the dynamics to accurately estimate trends and abundance, and provide the basis for robust advice about sustainable harvests. The status quo approach to assessment modelling has been to identify the β€œbest” model and generate advice from that model, mostly ignoring advice from other model configurations regardless of how closely they performed relative to the chosen model. We discuss and make suggestions about the utility of ensemble models, including revisions to the formal process of providing advice to management bodies, and recommend further research to evaluate potential gains in modelling and advice performance.publishedVersio

    Modulation of Kv Channel Expression and Function by TCR and Costimulatory Signals during Peripheral CD4+ Lymphocyte Differentiation

    Get PDF
    Ionic signaling pathways, including voltage-dependent potassium (Kv) channels, are instrumental in antigen-mediated responses of peripheral T cells. However, how Kv channels cooperate with other signaling pathways involved in T cell activation and differentiation is unknown. We report that multiple Kv channels are expressed by naive CD4+ lymphocytes, and that the current amplitude and kinetics are modulated by antigen receptor–mediated stimulation and costimulatory signals. Currents expressed in naive CD4+ lymphocytes are consistent with Kv1.1, Kv1.2, Kv1.3, and Kv1.6. Effector CD4+ cells generated by optimal TCR and costimulation exhibit only Kv1.3 current, but at approximately sixfold higher levels than naive cells. CD4+ lymphocytes anergized through partial stimulation exhibit similar Kv1.1, Kv1.2, and/or Kv1.6 currents, but approximately threefold more Kv1.3 current than naive cells. To determine if Kv channels contribute to the distinct functions of naive, effector, and anergized T cells, we tested their role in immunoregulatory cytokine production. Each Kv channel is required for maximal IL-2 production by naive CD4+ lymphocytes, whereas none appears to play a role in IL-2, IL-4, or IFN-Ξ³ production by effector cells. Interestingly, Kv channels in anergized lymphocytes actively suppress IL-4 production, and these functions are consistent with a role in regulating the membrane potential and calcium signaling
    • …
    corecore