830 research outputs found

    (2+1)-Gravity Solutions with Spinning Particles

    Get PDF
    We derive, in 2+1 dimensions, classical solutions for metric and motion of two or more spinning particles, in the conformal Coulomb gauge introduced previously. The solutions are exact in the NN-body static case, and are perturbative in the particles' velocities in the dynamic two-body case. A natural boundary for the existence of our gauge choice is provided by some ``CTC horizons'' encircling the particles, within which closed timelike curves occur.Comment: 30 pages, LaTeX, no figure

    The 2+1 Kepler Problem and Its Quantization

    Get PDF
    We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.Comment: 59 pages, LaTeX2e, 9 eps figure

    Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity

    Full text link
    In this paper we derive an expression for the conserved Pauli-Lubanski scalar in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point particles. We find that it is represented by an extra spatial shift Δ\Delta in addition to the usual identification rule (being a rotation over the cut). For two particles this invariant is expressed in terms of 't Hooft's phase-space variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are added. 6 pages Latex, 4 eps-figure

    Self-organized criticality induced by quenched disorder: experiments on flux avalanches in NbHx_x films

    Full text link
    We present an experimental study of the influence of quenched disorder on the distribution of flux avalanches in type-II superconductors. In the presence of much quenched disorder, the avalanche sizes are power-law distributed and show finite size scaling, as expected from self-organized criticality (SOC). Furthermore, the shape of the avalanches is observed to be fractal. In the absence of quenched disorder, a preferred size of avalanches is observed and avalanches are smooth. These observations indicate that a certain minimum amount of disorder is necessary for SOC behavior. We relate these findings to the appearance or non-appearance of SOC in other experimental systems, particularly piles of sand.Comment: 4 pages, 4 figure

    Mechanical Instabilities of Biological Tubes

    Full text link
    We study theoretically the shapes of biological tubes affected by various pathologies. When epithelial cells grow at an uncontrolled rate, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all of which are found in pathologies of tracheal, renal tubes or arteries. The final shape depends crucially on the mechanical parameters of the tissues : Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation

    Quantization of Point Particles in 2+1 Dimensional Gravity and Space-Time Discreteness

    Get PDF
    By investigating the canonical commutation rules for gravitating quantized particles in a 2+1 dimensional world it is found that these particles live on a space-time lattice. The space-time lattice points can be characterized by three integers. Various representations are possible, the details depending on the topology chosen for energy-momentum space. We find that an S2Ă—S1S_2\times S_1 topology yields a physically most interesting lattice within which first quantization of Dirac particles is possible. An S3S_3 topology also gives a lattice, but does not allow first quantized particles.Comment: 23 pages Plain TeX, 3 Figure

    Hamiltonian structure and quantization of 2+1 dimensional gravity coupled to particles

    Get PDF
    It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. This is proved directly for the two body problem and for the three body problem by using the Garnier equations for isomonodromic transformations. For a number of particles greater than three the existence of the hamiltonian is shown to be a consequence of a conjecture by Polyakov which connects the auxiliary parameters of the fuchsian differential equation which solves the SU(1,1) Riemann-Hilbert problem, to the Liouville action of the conformal factor which describes the space-metric. We give the exact diffeomorphism which transforms the expression of the spinning cone geometry in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics. The quantum mechanical Green's function for the two body problem is given.Comment: 34 pages LaTe

    (2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame

    Full text link
    We formulate and analyze the Hamiltonian dynamics of a pair of massive spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity, isometric to the infinity generated by a single massive but possibly spinning particle. The reduced phase space \Gamma_{red} has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the phase space of a Newtonian two-body system in the centre-of-mass frame, and we find on \Gamma_{red} a canonical chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit. Prospects for quantization are commented on.Comment: 38 pages, REVTeX v3.1 with amsfonts and epsf, 12 eps figures. (v2: Presentational improvement, references added, typos corrected.

    Hamiltonian structure of 2+1 dimensional gravity

    Get PDF
    A summary is given of some results and perspectives of the hamiltonian ADM approach to 2+1 dimensional gravity. After recalling the classical results for closed universes in absence of matter we go over the the case in which matter is present in the form of point spinless particles. Here the maximally slicing gauge proves most effective by relating 2+1 dimensional gravity to the Riemann- Hilbert problem. It is possible to solve the gravitational field in terms of the particle degrees of freedom thus reaching a reduced dynamics which involves only the particle positions and momenta. Such a dynamics is proven to be hamiltonian and the hamiltonian is given by the boundary term in the gravitational action. As an illustration the two body hamiltonian is used to provide the canonical quantization of the two particle system.Comment: 13 pages,2 figures,latex, Plenary talk at SIGRAV2000 Conferenc

    Efficient Attack Graph Analysis through Approximate Inference

    Get PDF
    Attack graphs provide compact representations of the attack paths that an attacker can follow to compromise network resources by analysing network vulnerabilities and topology. These representations are a powerful tool for security risk assessment. Bayesian inference on attack graphs enables the estimation of the risk of compromise to the system's components given their vulnerabilities and interconnections, and accounts for multi-step attacks spreading through the system. Whilst static analysis considers the risk posture at rest, dynamic analysis also accounts for evidence of compromise, e.g. from SIEM software or forensic investigation. However, in this context, exact Bayesian inference techniques do not scale well. In this paper we show how Loopy Belief Propagation - an approximate inference technique - can be applied to attack graphs, and that it scales linearly in the number of nodes for both static and dynamic analysis, making such analyses viable for larger networks. We experiment with different topologies and network clustering on synthetic Bayesian attack graphs with thousands of nodes to show that the algorithm's accuracy is acceptable and converge to a stable solution. We compare sequential and parallel versions of Loopy Belief Propagation with exact inference techniques for both static and dynamic analysis, showing the advantages of approximate inference techniques to scale to larger attack graphs.Comment: 30 pages, 14 figure
    • …
    corecore