1,085 research outputs found
Synchronized single electron emission from dynamical quantum dots
We study synchronized quantized charge pumping through several dynamical
quantum dots (QDs) driven by a single time modulated gate signal. We show that
the main obstacle for synchronization being the lack of uniformity can be
overcome by operating the QDs in the decay cascade regime. We discuss the
mechanism responsible for lifting the stringent uniformity requirements. This
enhanced functionality of dynamical QDs might find applications in
nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP
Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment
We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment
Enhancing accuracy and precision of transparent synthetic soil modelling
Over recent years non-intrusive modelling techniques have been developed to investigate soil-structure interaction problems of increasingly complex geometry. This paper concerns the development of a small-scale, 1 g, modelling technique using a transparent analogue for soil with particle image velocimetry for internal displacement measurement. Larger model geometry achieved in this research using fine-grained transparent synthetic soils has led to an increased need for rigorous photogrammetric correction techniques. A correction framework, based upon a modified version of the pinhole camera model, is presented that corrects for lens and camera movement induced errors as well as scaling from image space to object space. An additional statistical approach is also developed to enhance the system precision, by minimising the impact of increased non-coplanarity between the photogrammetry control plane and the target plane. The enhanced data correction and statistical precision is demonstrated using a case study examining the failure mechanism around a double helical screw pile installed in transparent synthetic soil representative of a soft clay
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD
Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al
Effect of crystalline disorder on quantum tunneling in the single-molecule magnet Mn12 benzoate
10 páginas, 9 figuras, 1 tabla.-- PACS number(s): 75.45.+j, 75.50.Xx, 75.60.Jk, 75.50.Kj.-- et al.We report a detailed study of the effects that crystalline disorder has on the magnetic relaxation and quantum tunneling of Mn12 benzoate clusters. Thanks to the absence of interstitial molecules in the crystal structure of this molecular compound, we have been able to isolate the influence of long-range crystalline disorder. For this, we compare results obtained under two extreme situations: a crystalline sample and a nearly amorphous material. The results show that crystalline disorder affects little the anisotropy, magnetic relaxation, and quantum tunneling of these materials. It follows that disorder is not a necessary ingredient for the existence of magnetic quantum tunneling. The results unveil, however, a subtle influence of crystallinity via the modification of the symmetry of dipole-dipole interactions. The faster tunneling rates measured for the amorphous material are accounted for by a narrower distribution of dipolar bias in this material, as compared with the crystalline sample.This work has been partly funded by
Grants No. MAT2009-13977-C03, No. MAT2008-06542-
C04, and No. CSD2007-00010 from the Spanish Ministerio de Ciencia e Innovación, and NABISUP from DGA. We acknowledge funding from Acción Integrada under Grant No. HA2006-0051 and the Network of Excellence MAGMANet.
J.v.S and S.D. acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) and the DAAD. Ch.C. and I.I. acknowledge the Spanish Ministerio de Ciencia e Innovación.Peer reviewe
- …