822 research outputs found

    Vehicle/engine integration

    Get PDF
    VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration

    Suite of simple metrics reveals common movement syndromes across vertebrate taxa

    Get PDF
    ecause empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging)

    Neutrino self-energy and dispersion in a medium with magnetic field

    Get PDF
    We calculate the one-loop thermal self-energy of a neutrino in a constant and homogeneous magnetic field to all orders in the magnetic field strength using Schwinger's proper time method. We obtain the dispersion relation under various conditions.Comment: 17 pp, RevTeX, one figur

    Quark Dispersion Relation and Dilepton Production in the Quark-Gluon Plasma

    Get PDF
    Under very general assumptions we show that the quark dispersion relation in the quark-gluon plasma is given by two collective branches, of which one has a minimum at a non-vanishing momentum. This general feature of the quark dispersion relation leads to structures (van Hove singularities, gaps) in the low mass dilepton production rate, which might provide a unique signature for the quark-gluon plasma formation in relativistic heavy ion collisions.Comment: 6 pages, Revtex, 2 PostScript figures, revised version to be published in Phys. Rev. Let

    Can Van Hove singularities be observed in relativistic heavy-ion collisions ?

    Full text link
    Based on general arguments the in-medium quark propagator in a quark-gluon plasma leads to a quark dispersion relation consisting of two branches, of which one exhibits a minimum at some finite momentum. This results in a vanishing group velocity for collective quark modes. Important quantities such as the production rate of low mass lepton pairs and mesonic correlators depend inversely on this group velocity. Therefore these quantities, which follow from self energy diagrams containing a quark loop, are strongly affected by Van Hove singularities (peaks and gaps). If these sharp structures could be observed in relativistic heavy-ion collisions it would reveal the physical picture of the QGP as a gas of quasiparticles.Comment: 12 pages including nine figures and style files, invited talk given at the ICPAQGP-2001, November 26-30, 2001, Jaipur, Indi

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.

    Dynamical Mass Generation in a Finite-Temperature Abelian Gauge Theory

    Get PDF
    We write down the gap equation for the fermion self-energy in a finite-temperature abelian gauge theory in three dimensions. The instantaneous approximation is relaxed, momentum-dependent fermion and photon self-energies are considered, and the corresponding Schwinger-Dyson equation is solved numerically. The relation between the zero-momentum and zero-temperature fermion self-energy and the critical temperature T_c, above which there is no dynamical mass generation, is then studied. We also investigate the effect which the number of fermion flavours N_f has on the results, and we give the phase diagram of the theory with respect to T and N_f.Comment: 20 LaTeX pages, 4 postscript figures in a single file, version to appear in Physical Review

    Quantum Dissipation and Decay in Medium

    Get PDF
    Quantum dissipation in thermal environment is investigated, using the path integral approach. The reduced density matrix of the harmonic oscillator system coupled to thermal bath of oscillators is derived for arbitrary spectrum of bath oscillators. Time evolution and the end point of two-body decay of unstable particles is then elucidated: After early transient times unstable particles undergo the exponential decay, followed by the power law decay and finally ending in a mixed state of residual particles containing contributions from both on and off the mass shell, whose abundance does not suffer from the Boltzmann suppression.Comment: 19 pages, LATEX file. Substantially expanded and revised for publication, including more complete description of application to unstable particle decay in thermal medium. Some minor mistake of numerical factors correcte

    Axino dark matter from thermal production

    Full text link
    The axino is a promising candidate for dark matter in the Universe. It is electrically and color neutral, very weakly interacting, and could be - as assumed in this study - the lightest supersymmetric particle, which is stable for unbroken R-parity. In supersymmetric extensions of the standard model, in which the strong CP problem is solved via the Peccei-Quinn mechanism, the axino arises naturally as the fermionic superpartner of the axion. We compute the thermal production rate of axinos in supersymmetric QCD. Using hard thermal loop resummation, we obtain a finite result in a gauge-invariant way, which takes into account Debye screening in the hot quark-gluon-squark-gluino plasma. The relic axino abundance from thermal scatterings after inflation is evaluated. We find that thermally produced axinos could provide the dominant part of cold dark matter, for example, for an axino mass of 100 keV and a reheating temperature of 10^6 GeV.Comment: 33 pages, 7 figures, 1 table, erratum adde

    Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature

    Get PDF
    In an effort to further understand the structure of effective actions for fermions in an external gauge background at finite temperature, we study the example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge field. We evaluate the effective action exactly at finite temperature. This effective action is non-analytic as is expected at finite temperature. However, contrary to the structure at zero temperature and contrary to naive expectations, the effective action at finite temperature has interactions to all (even) orders (which, however, do not lead to any quantum corrections). The covariant structure thus obtained may prove useful in studying 2+1 dimensional models in arbitrary backgrounds. We also comment briefly on the solubility of various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page
    corecore