93 research outputs found
Articulating Axial-Flow Turbomachinery Rotor Blade For Enabling Variable Speed Gas Turbine Engine
Current technology gas turbine engines are generally optimized to operate at nearly a fixed speed with fixed blade geometries for the design operating condition. When the operating condition of the engine changes, the flow incidence angles may not be optimum with the blade geometries resulting in reduced off-design performance. But, if we have the capability of articulating the pitch angle of axial-flow compressor/turbine blades in coordination with adjustable stator vanes, it can improve performance by maintaining flow incidence angles within the optimum range for given blade geometries at all operating conditions. Maintaining flow incidence angles within the optimum range can prevent the likelihood of flow separation in the blade passage and also reduce the thermal stresses developed due to aerothermal loads for variable speed gas turbine applications. This paper discusses a recent invention of adaptable articulating axial-flow compressor or turbine rotor blade that can significantly impact developing a high efficiency variable speed gas turbine for rotorcraft or ground vehicles that may need to operate optimally at different torque/speed conditions during various maneuvers. U.S. Army Research Laboratory has partnered with University of California San Diego and Iowa State University Collaborators to conduct high fidelity stator-rotor interaction analysis for evaluating the aerodynamic efficiency benefits of an articulating axial flow turbine blade concept. In addition, a design study for articulating turbine or compressor rotor blade using smart material based actuators using Shape Memory Alloy (SMA) has been carried out. Highly coupled fluid-structure interaction computational study of articulating turbine rotor and stator blades, together with a design concept of articulating axial-flow turbomachinery rotor blade using a smart material such as SMA is presented
Digital Drugs: an anatomy of new medicines
Medicines are digitalized as aspects of their regulation and use are embodied in or draw from interlinked computerized systems and databases. This paper considers how this development changes the delivery of health care, the pharma industry, and regulatory and professional structures, as it reconfigures the material character of drugs themselves. It draws on the concept of assemblage in presenting a theory-based analysis that explores digital drugs’ ontological status including how they embody benefit and value. The paper addresses three interconnected domains – that of use of drugs (practice), of research (epistemology) and of regulation (structures)
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
- …