13 research outputs found

    Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation

    Get PDF
    This article presents a 125-day experiment to investigate model predictive heat pump control. The experiment was performed in two parallel operated systems with identical components during the heating season. One of the systems was operated by a standard controller and thus represented a reference to evaluate the model predictive control. Both test rigs were heated by an air-source heat pump which is influenced by real weather conditions. A single-family house model depending on weather measurement data ensured a realistic heat consumption in the test rigs. The adapted model predictive control algorithm aimed to minimize the operational costs of the heat pump. The evaluation of the measurement results showed that the electrical energy demand of the heat pump can be reduced and the coefficient of performance can be increased by applying the model predictive controller. Furthermore, the self-consumption of photovoltaic electricity, which is calculated by means of a photovoltaic model and global radiation measurement data, was more than doubled. Consequently, the energy costs of heat pump operation were reduced by 9.0% in comparison to the reference and assuming German energy prices. The results were further compared to the scientific literature and short-term measurements were performed with the same experimental setup. The dependence of the measurement results on the weather conditions and the weather forecasting quality are shown. It was found that the duration of experiments should be as long as possible for a comprehensive evaluation of the model predictive control potential

    Genetic effects on molecular network states explain complex traits

    Get PDF
    The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes

    Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation

    No full text
    The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.status: publishe

    Genetic effects on molecular network states explain complex traits

    No full text
    The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.ISSN:1744-429

    The impact of genomic variation on protein phosphorylation states and regulatory networks

    No full text
    Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.ISSN:1744-429
    corecore