1,920 research outputs found
Nonperturbative ``Lattice Perturbation Theory''
We discuss a program for replacing standard perturbative methods with Monte
Carlo simulations in short distance lattice gauge theory calculations.Comment: 3 pages, uuencoded Latex file, two embedded figures and .sty file
include
Lattice QCD on Small Computers
We demonstrate that lattice QCD calculations can be made -- times
faster by using very coarse lattices. To obtain accurate results, we replace
the standard lattice actions by perturbatively-improved actions with
tadpole-improved correction terms that remove the leading errors due to the
lattice. To illustrate the power of this approach, we calculate the
static-quark potential, and the charmonium spectrum and wavefunctions using a
desktop computer. We obtain accurate results that are independent of the
lattice spacing and agree well with experiment.Comment: 15 pages, 3 figs incl as LaTex pictures Minor additions to tables and
tex
One-Loop Matching of the Heavy-Light A_0 and V_0 Currents with NRQCD Heavy and Improved Naive Light Quarks
One-loop matching of heavy-light currents is carried out for a highly
improved lattice action, including the effects of dimension 4 O(1/M) and O(a)
operators. We use the NRQCD action for heavy quarks, the Asqtad improved naive
action for light quarks, and the Symanzik improved glue action. As part of the
matching procedure we also present results for the NRQCD self energy and for
massless Asqtad quark wavefunction renormalization with improved glue.Comment: 25 pages, 3 eps-figure
Discovery and Characterization of 3000+ Main-Sequence Binaries from APOGEE Spectra
We develop a data-driven spectral model for identifying and characterizing
spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra
of main-sequence stars. Binaries and triples are identified as targets whose
spectra can be significantly better fit by a superposition of two or three
model spectra, drawn from the same isochrone, than any single-star model. From
an initial sample of 20,000 main-sequence targets, we identify
2,500 binaries in which both the primary and secondary star contribute
detectably to the spectrum, simultaneously fitting for the velocities and
stellar parameters of both components. We additionally identify and fit
200 triple systems, as well as 700 velocity-variable systems in
which the secondary does not contribute detectably to the spectrum. Our model
simplifies the process of simultaneously fitting single- or multi-epoch spectra
with composite models and does not depend on a velocity offset between the two
components of a binary, making it sensitive to traditionally undetectable
systems with periods of hundreds or thousands of years. In agreement with
conventional expectations, almost all the spectrally-identified binaries with
measured parallaxes fall above the main sequence in the color-magnitude
diagram. We find excellent agreement between spectrally and dynamically
inferred mass ratios for the 600 binaries in which a dynamical mass ratio
can be measured from multi-epoch radial velocities. We obtain full orbital
solutions for 64 systems, including 14 close binaries within hierarchical
triples. We make available catalogs of stellar parameters, abundances, mass
ratios, and orbital parameters.Comment: Accepted to MNRAS with minor revisions since v1. 19 pages, 12
figures, plus Appendice
The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of Nearby Dwarf Galaxies
We study the relationship between the field star formation and cluster
formation properties in a large sample of nearby dwarf galaxies. We use optical
data from the Hubble Space Telescope and from ground-based telescopes to derive
the ages and masses of the young (t_age < 100Myr) cluster sample. Our data
provides the first constraints on two proposed relationships between the star
formation rate of galaxies and the properties of their cluster systems in the
low star formation rate regime. The data show broad agreement with these
relationships, but significant galaxy-to-galaxy scatter exists. In part, this
scatter can be accounted for by simulating the small number of clusters
detected from stochastically sampling the cluster mass function. However, this
stochasticity does not fully account for the observed scatter in our data
suggesting there may be true variations in the fraction of stars formed in
clusters in dwarf galaxies. Comparison of the cluster formation and the
brightest cluster in our sample galaxies also provide constraints on cluster
destruction models.Comment: 16 pages, 9 figures, Accepted to Ap
- …