25,822 research outputs found
Mercury in the environs of the north slope of Alaska
The analysis of Greenland ice suggests that the flux of mercury from the continents
to the atmosphere has increased in recent times, perhaps partly as a result of the many of
man’s activities that effect an alteration of terrestrial surfaces. Upon the exposure of fresh
crustal matter, the natural outgassing of mercury vapor from the earth’s surface could be
enhanced.
Accordingly, mercury was measured in a variety of environmental materials gathered
from the North Slope of Alaska to provide background data prior to the anticipated increase
of activity in this environment. The materials were collected during the U. S. Coast Guard
WEBSEC 72-73 cruises as well as through the facilities provided by Naval Arctic Research
Laboratory in the spring of 1973.
The method of measurement depended upon radioactivation of mercury with neutrons
and the subsequent quantification of characteristic gamma radiations after radiochemical
purification.
Mercury concentrations in seawater at several locations in the vicinity of 151°W,
71°N averaged 20 parts per trillion. The waters from all stations east of this location showed
a significantly smaller concentration. This difference may relate to penetration o f Bering-
Chukchi Sea water into the southern Beaufort Sea to 151°W. Marine sediments on the shelf
and slope between 143°W and 153°W contained about 100 parts per billion mercury, except
for those on the continental shelf between Barter Island and the Canning River, where the
concentration was less than half this value. These results are consistent with sediment input
from the respective rivers when their mercury content and mineralogy are considered. The
mercury content of river waters was 18 ppt and in reasonable agreement with the average of
snow samples (13 ppt). The burden of mercury in plankton was 37 ppb.This work was supported by the office of Naval Research under grant N R 083-290
Relative coronal abundances derived from X-ray observations 3: The effect of cascades on the relative intensity of Fe (XVII) line fluxes, and a revised iron abundance
Permitted lines in the optically thin coronal X-ray spectrum were analyzed to find the distribution of coronal material, as a function of temperature, without special assumptions concerning coronal conditions. The resonance lines of N, O, Ne, Na, Mg, Al, Si, S, and Ar which dominate the quiet coronal spectrum below 25A were observed. Coronal models were constructed and the relative abundances of these elements were determined. The intensity in the lines of the 2p-3d transitions near 15A was used in conjunction with these coronal models, with the assumption of coronal excitation, to determine the Fe XVII abundance. The relative intensities of the 2p-3d Fe XVII lines observed in the corona agreed with theoretical prediction. Using a more complete theoretical model, and higher resolution observations, a revised calculation of iron abundance relative to hydrogen of 0.000026 was made
Positron annihilation induced Auger electron spectroscopy
Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions
QZ Serpentis: A Dwarf Nova with a 2-Hour Orbital Period and an Anomalously Hot, Bright Secondary Star
We present spectroscopy and time-series photometry of the dwarf nova QZ Ser.
The spectrum shows a rich absorption line spectrum of type K4 +- 2. K-type
secondary stars are generally seen in dwarf novae with orbital periods P-orb
around 6 h, but in QZ Ser the absorption radial velocities show an obvious
modulation (semi-amplitude 207(5) km/s) at P-orb = 119.752(2) min, much shorter
than typical for such a relatively warm and prominent secondary spectrum. The
H-alpha emission-line velocity is modulated at the same period and roughly
opposite phase. Time-series photometry shows flickering superposed on a
modulation with two humps per orbit, consistent with ellipsoidal variation of
the secondary's light. QZ Ser is a second example of a relatively short-period
dwarf nova with a surprisingly warm secondary. Model calculations suggest that
the secondary is strongly enhanced in helium, and had already undergone
significant nuclear evolution when mass transfer began. Several sodium
absorption features in the secondary spectrum are unusually strong, which may
indicate that the present-day surface was the site of CNO-cycle hydrogen
burning in the past.Comment: 11 pages, 3 postscript figures, 1 jpeg greyscale figure. Accepted for
publication in PAS
Semi-classical equation of state and specific heats for neutron-star inner crust with proton shell corrections
An approach to the equation of state for the inner crust of neutron stars
based on Skyrme-type forces is presented. Working within the Wigner-Seitz
picture, the energy is calculated by the TETF (temperature-dependent extended
Thomas-Fermi) method, with proton shell corrections added self-consistently by
the Strutinsky-integral method. Using a Skyrme force that has been fitted to
both neutron matter and to essentially all the nuclear mass data, we find
strong proton shell effects: proton numbers = 50, 40 and 20 are the only
values possible in the inner crust, assuming that nuclear equilibrium is
maintained in the cooling neutron star right down to the ambient temperature.
Convergence problems with the TETF expansion for the entropy, and our way of
handling them, are discussed. Full TETF expressions for the specific heat of
inhomogeneous nuclear matter are presented. Our treatment of the electron gas,
including its specific heat, is essentially exact, and is described in detail.Comment: 41 pages, 6 figure
Environment-dependent dissipation in quantum Brownian motion
The dissipative dynamics of a quantum Brownian particle is studied for
different types of environment. We derive analytic results for the time
evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic
environments, without performing the Markovian approximation. Our results allow
to establish a direct link between the form of the environmental spectrum and
the thermalization dynamics. This in turn leads to a natural explanation of the
microscopic physical processes ruling the system time evolution both in the
short-time non-Markovian region and in the long-time Markovian one. Our
comparative study of thermalization for different environments sheds light on
the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
Composite fermions in periodic and random antidot lattices
The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions
Cornelius Lanczos's derivation of the usual action integral of classical electrodynamics
The usual action integral of classical electrodynamics is derived starting
from Lanczos's electrodynamics -- a pure field theory in which charged
particles are identified with singularities of the homogeneous Maxwell's
equations interpreted as a generalization of the Cauchy-Riemann regularity
conditions from complex to biquaternion functions of four complex variables. It
is shown that contrary to the usual theory based on the inhomogeneous Maxwell's
equations, in which charged particles are identified with the sources, there is
no divergence in the self-interaction so that the mass is finite, and that the
only approximation made in the derivation are the usual conditions required for
the internal consistency of classical electrodynamics. Moreover, it is found
that the radius of the boundary surface enclosing a singularity interpreted as
an electron is on the same order as that of the hypothetical "bag" confining
the quarks in a hadron, so that Lanczos's electrodynamics is engaging the
reconsideration of many fundamental concepts related to the nature of
elementary particles.Comment: 16 pages. Final version to be published in "Foundations of Physics
- …