283 research outputs found

    Information-based methods for predicting gene function from systematic gene knock-downs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid annotation of genes on a genome-wide scale is now possible for several organisms using high-throughput RNA interference assays to knock down the expression of a specific gene. To date, dozens of RNA interference phenotypes have been recorded for the nematode <it>Caenorhabditis elegans</it>. Although previous studies have demonstrated the merit of using knock-down phenotypes to predict gene function, it is unclear how the data can be used most effectively. An open question is how to optimally make use of phenotypic observations, possibly in combination with other functional genomics datasets, to identify genes that share a common role.</p> <p>Results</p> <p>We compared several methods for detecting gene-gene functional similarity from phenotypic knock-down profiles. We found that information-based measures, which explicitly incorporate a phenotype's genomic frequency when calculating gene-gene similarity, outperform non-information-based methods. We report the presence of newly predicted modules identified from an integrated functional network containing phenotypic congruency links derived from an information-based measure. One such module is a set of genes predicted to play a role in regulating body morphology based on their multiply-supported interactions with members of the TGF-<it>β </it>signaling pathway.</p> <p>Conclusion</p> <p>Information-based metrics significantly improve the comparison of phenotypic knock-down profiles, based upon their ability to enhance gene function prediction and identify novel functional modules.</p

    Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks.

    Get PDF
    Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, \u27divergent\u27 Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal

    Ganzheitliche Untersuchungsmethoden zur Erfassung und Prüfung der Qualität ökologischer Lebensmittel: Stand der Entwicklung und Validierung

    Get PDF
    In dem wachsenden Markt ökologischer Lebensmittel werden Methoden zur produktorientierten Qualitätserfassung gefordert. Dabei geht es u.a. um die Unterscheidung von Produkten aus unterschiedlichen Anbauverfahren. Die Ziele des Projektes waren daher: 1. ausgewählte ganzheitliche Methoden gemäß ISO 17025 zu validieren, d.h. Laborprozesse festzulegen, sowie Einflussgrößen und Verfahrensmerkmale zu bestimmen, 2. zu testen, ob diese Verfahren eine Differenzierung von definierten Proben statistisch abgesichert zeigen können. . Diese Ziele konnten erreicht werden. Es wurde bestätigt, dass einige der Methoden auf Grundlage dokumentierter Prozeduren Lebensmittel aus definierten Anbauversuchen (u.a. aus dem DOK-Versuch am FIBL/CH) reproduzierbar unterscheiden können. Die Koordination und die Validierung der Kupferchlorid-Kristallisation sowie die Messung der Polyphenole lag bei der Universität Kassel, FG Ökologische Lebensmittelqualität und Ernährungskultur. Die KWALIS GmbH, Dipperz, validierte die Fluoreszenz-Anregungsspektroskopie und die Bestimmung des Physiologischen Aminosäurestatus, die EQC GmbH, Weidenbach die elektrochemischen Messungen. Dr. Kromidas, Saarbrücken übernahm die Beratung der Validierungsprozeduren. . An Blindproben wurde untersucht, ob die Verfahren für Weizen- und Möhrenproben aus definierten Anbau- und Sortenversuchen geeignet sind (Fragestellung der Validierung). Die Proben wurden von unabhängiger Stelle (OEL-FAL, Trenthorst) codiert. Die Proben wurden gleichzeitig an alle Partner versandt; dadurch konnten die Methoden auch untereinander verglichen werden. Die Methoden Kupferchlorid-Kristallisation, Fluoreszenz-Anregungsspektroskopie und Physiologischer Aminosäurestatus sind für die Fragestellung geeignet. Mit allen drei Methoden konnten die Proben differenziert und gruppiert werden. Darüber hinaus konnten mit der Fluoreszenz-Anregungsspektroskopie und über den physiologischen Aminosäurestatus die Proben auch den Anbauweisen richtig zugeordnet werden. Allerdings ist damit noch keine Aussage über die Fähigkeit dieser Verfahren möglich, generell Proben aus ökologischer und konventioneller Herkunft zu unterscheiden. Dafür sind weitere Untersuchungen sowohl an Proben definierter Herkunft als auch an Marktproben notwendig

    Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels

    Get PDF
    Rapid-solidification experiments were conducted for understanding dent defects formed during strip casting of twin-induced plasticity (TWIP) steels. The rapid-solidification experiments reproduced the dent defects formed on these steels, which were generally located at valleys of the shot-blasted roughness on the substrate. The rapid-solidification experiment results reveal that the number of dips, the Mn content of the steel, and the surface roughness of the substrate affect the depth and size of dents formed on the solidified-shell surfaces, while the composition of the atmosphere gases and the carbon content of the steel are not factors. The formation of dents was attributed to the entrapment of gases inside the roughness valleys of the substrate surface and their volume expansion due to the temperature of the steel melt and the latent heat. The dents could be prevented when the thermal expansion of gases was suppressed by making longitudinal grooves on the substrate surface, which allowed the entrapped gases to escape. Sound solidified shells were obtained by optimizing the width and depth of the longitudinal grooves and by controlling the shot-blasting conditions.ope

    Genetic Associations with Gestational Duration and Spontaneous Preterm Birth

    Get PDF
    BACKGROUND Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0x10(-8)) or an association with suggestive significance (P<1.0x10(-6)) in the discovery set. RESULTS In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement.Peer reviewe

    The UCSC Genome Browser Database: update 2006

    Get PDF
    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, mRNA and expressed sequence tag evidence, comparative genomics, regulation, expression and variation data. The database is optimized to support fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. The Genome Browser displays a wide variety of annotations at all scales from single nucleotide level up to a full chromosome. The Table Browser provides direct access to the database tables and sequence data, enabling complex queries on genome-wide datasets. The Proteome Browser graphically displays protein properties. The Gene Sorter allows filtering and comparison of genes by several metrics including expression data and several gene properties. BLAT and In Silico PCR search for sequences in entire genomes in seconds. These tools are highly integrated and provide many hyperlinks to other databases and websites. The GBD, browsing tools, downloadable data files and links to documentation and other information can be found at

    SHIRAZ: an automated histology image annotation system for zebrafish phenomics

    Get PDF
    Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish

    Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

    Get PDF
    Background The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. Results Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. Conclusions In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.publishedVersio
    corecore