219 research outputs found
Recommended from our members
Do biologic markers predict cardiovascular end points in diabetic end-stage renal disease? A prospective longitudinal study
Background: Diabetic patients on hemodialysis are at high risk of death from cardiovascular disease, and research has suggested that various biologic markers of inflammation, oxidative stress and hemostasis may give added value to clinical information for predicting cardiovascular event (CVE)-free survival. This information could be particularly important in evaluating this population for renal transplant, given the scarcity of organs. We hypothesized that in diabetic patients undergoing renal replacement therapy (RRT) these biologic markers would prove useful in predicting event-free follow-up in a prospective study. Methods: One hundred and fifty diabetic (76 type 1, 74 type 2) and 27 non-diabetic stable RRT patients were followed for 0.04–13.69 years for CVE (myocardial infarction, coronary arterial intervention, peripheral arterial bypass or amputation, cerebrovascular accident or carotid artery intervention), cardiac and all-cause mortality. Measured biologic markers of inflammation included the following: Il-6, C reactive protein, fibrinogen; of hemostasis: fibrinogen, plasminogen activator inhibitor (PAI), fibrinolytic activity, von Willebrand factor VII (vWF), platelet-selectin, viscosity and of oxidative stress: advanced glycated end products and antibody to oxidized low-density lipoprotein. For each, upper versus lower tertiles were compared for duration of event-free follow-up. Results: Cardiovascular events prior to study entry occurred in 51.3% of DM1, 54.0% of DM2 and 25.9% of DM0 patients. Subsequent cardiovascular events were noted in 31.6% of DM1, 45.9% of DM2 and 11.1% of DM0 patients. All mean levels of biologic markers at baseline were abnormal (P < 0.05). Conclusions: In this RRT population, all biologic marker levels except PAI did not improve clinical prediction of events
Airway response to respiratory syncytial virus has incidental antibacterial effects.
RSV infection is typically associated with secondary bacterial infection. We hypothesise that the local airway immune response to RSV has incidental antibacterial effects. Using coordinated proteomics and metagenomics analysis we simultaneously analysed the microbiota and proteomes of the upper airway and determined direct antibacterial activity in airway secretions of RSV-infected children. Here, we report that the airway abundance of Streptococcus was higher in samples collected at the time of RSV infection compared with samples collected one month later. RSV infection is associated with neutrophil influx into the airway and degranulation and is marked by overexpression of proteins with known antibacterial activity including BPI, EPX, MPO and AZU1. Airway secretions of children infected with RSV, have significantly greater antibacterial activity compared to RSV-negative controls. This RSV-associated, neutrophil-mediated antibacterial response in the airway appears to act as a regulatory mechanism that modulates bacterial growth in the airways of RSV-infected children
Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101
Functionalization of metal–organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen–host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the −Br ligand increases the secondary building unit’s hydrogen affinity, while the −NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of −Br and −NH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers
Cement-in-cement stem revision for Vancouver type B periprosthetic femoral fractures after total hip arthroplasty: A 3-year follow-up of 23 cases
Background and purpose Revision surgery for periprosthetic femoral fractures around an unstable cemented femoral stem traditionally requires removal of existing cement. We propose a new technique whereby a well-fixed cement mantle can be retained in cases with simple fractures that can be reduced anatomically when a cemented revision is planned. This technique is well established in femoral stem revision, but not in association with a fracture
Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis
Infections by Neisseria meningitidis show duality between frequent asymptomatic carriage and occasional life-threatening disease. Bacterial and host factors involved in this balance are not fully understood. Cytopathic effects and cell damage may prelude to pathogenesis of isolates belonging to hyper-invasive lineages. We aimed to analyze cell–bacteria interactions using both pathogenic and carriage meningococcal isolates. Several pathogenic isolates of the ST-11 clonal complex and carriage isolates were used to infect human epithelial cells. Cytopathic effect was determined and apoptosis was scored using several methods (FITC-Annexin V staining followed by FACS analysis, caspase assays and DNA fragmentation). Only pathogenic isolates were able to induce apoptosis in human epithelial cells, mainly by lipooligosaccharide (endotoxin). Bioactive TNF-α is only detected when cells were infected by pathogenic isolates. At the opposite, carriage isolates seem to provoke shedding of the TNF-α receptor I (TNF-RI) from the surface that protect cells from apoptosis by chelating TNF-α. Ability to induce apoptosis and inflammation may represent major traits in the pathogenesis of N. meningitidis. However, our data strongly suggest that carriage isolates of meningococci reduce inflammatory response and apoptosis induction, resulting in the protection of their ecological niche at the human nasopharynx
Perioperative mortality after hemiarthroplasty related to fixation method: A study based on the Australian Orthopaedic Association National Joint Replacement Registry
Background and purpose: The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality.----- ----- Methods: We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type.----- ----- Results: Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point.----- ----- Interpretation: This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip
Early functional outcome after subvastus or parapatellar approach in knee arthroplasty is comparable
The role of pneumolysin in mediating lung damage in a lethal pneumococcal pneumonia murine model
BACKGROUND: Intranasal inoculation of Streptococcus pneumoniae D39 serotype 2 causes fatal pneumonia in mice. The cytotoxic and inflammatory properties of pneumolysin (PLY) have been implicated in the pathogenesis of pneumococcal pneumonia. METHODS: To examine the role of PLY in this experimental model we performed ELISA assays for PLY quantification. The distribution patterns of PLY and apoptosis were established by immunohistochemical detection of PLY, caspase-9 activity and TUNEL assay on tissue sections from mice lungs at various times, and the results were quantified with image analysis. Inflammatory and apoptotic cells were also quantified on lung tissue sections from antibody treated mice. RESULTS: In bronchoalveolar lavages (BAL), total PLY was found at sublytic concentrations which were located in alveolar macrophages and leukocytes. The bronchoalveolar epithelium was PLY-positive, while the vascular endothelium was not PLY reactive. The pattern and extension of cellular apoptosis was similar. Anti-PLY antibody treatment decreased the lung damage and the number of apoptotic and inflammatory cells in lung tissues. CONCLUSION: The data strongly suggest that in vivo lung injury could be due to the pro-apoptotic and pro-inflammatory activity of PLY, rather than its cytotoxic activity. PLY at sublytic concentrations induces lethal inflammation in lung tissues and is involved in host cell apoptosis, whose effects are important to pathogen survival
- …