2,112 research outputs found
Complete Set of Homogeneous Isotropic Analytic Solutions in Scalar-Tensor Cosmology with Radiation and Curvature
We study a model of a scalar field minimally coupled to gravity, with a
specific potential energy for the scalar field, and include curvature and
radiation as two additional parameters. Our goal is to obtain analytically the
complete set of configurations of a homogeneous and isotropic universe as a
function of time. This leads to a geodesically complete description of the
universe, including the passage through the cosmological singularities, at the
classical level. We give all the solutions analytically without any
restrictions on the parameter space of the model or initial values of the
fields. We find that for generic solutions the universe goes through a singular
(zero-size) bounce by entering a period of antigravity at each big crunch and
exiting from it at the following big bang. This happens cyclically again and
again without violating the null energy condition. There is a special subset of
geodesically complete non-generic solutions which perform zero-size bounces
without ever entering the antigravity regime in all cycles. For these, initial
values of the fields are synchronized and quantized but the parameters of the
model are not restricted. There is also a subset of spatial curvature-induced
solutions that have finite-size bounces in the gravity regime and never enter
the antigravity phase. These exist only within a small continuous domain of
parameter space without fine tuning initial conditions. To obtain these
results, we identified 25 regions of a 6-parameter space in which the complete
set of analytic solutions are explicitly obtained.Comment: 38 pages, 29 figure
Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion
We present an analytic method based on the Hadamard-WKB expansion to
calculate the self-force for a particle with scalar charge that undergoes
radial infall in a Schwarzschild spacetime after being held at rest until a
time t = 0. Our result is valid in the case of short duration from the start.
It is possible to use the Hadamard-WKB expansion in this case because the value
of the integral of the retarded Green's function over the particle's entire
past trajectory can be expressed in terms of two integrals over the time period
that the particle has been falling. This analytic result is expected to be
useful as a check for numerical prescriptions including those involving mode
sum regularization and for any other analytical approximations to self-force
calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the
corrections given in the erratu
Behaviour of entanglement and Cooper pairs under relativistic boosts
Recent work has shown how single-particle entangled states are transformed
when boosted in relativistic frames for certain restricted geometries. Here we
extend that work to consider completely general inertial boosts. We then apply
our single particle results to multiparticle entanglements by focussing on
Cooper pairs of electrons. We show that a standard Cooper pair state consisting
of a spin-singlet acquires spin-triplet components in a relativistically
boosted inertial frame, regardless of the geometry. We also show that, if we
start with a spin-triplet pair, two out of the three triplet states acquire a
singlet component, the size of which depends on the geometry. This
transformation between the different singlet and triplet superconducting pairs
may lead to a better understanding of unconventional superconductivity.Comment: 5 pages, 2 figure
Non-relativistic Maxwell-Chern-Simons Vortices
The non-relativistic Maxwell-Chern-Simons model recently introduced by Manton
is shown to admit self-dual vortex solutions with non-zero electric field. The
interrelated ``geometric'' and ``hidden'' symmetries are explained. The theory
is also extended to (non-relativistic) spinors. A relativistic, self-dual
model, whose non-relativistic limit is the Manton model is also presented. The
relation to previous work is discussed.Comment: 20 pages plain TeX. Revised: minor errors corrected and symmetries
explained in a clearer way. Version as will appear in Ann. Phys. (N.Y.
Psoriasis: embarking a dynamic shift in the skin microbiota
Recent interest has arisen regarding the role of microbiome and its composition in the pathogenesis of psoriasis. Numerous studies have shown that there are alterations in skin flora arrangement between normal individuals and psoriatic patients. Psoriasis exacerbation could be interconnected with epidermal or mucosal colonization with streptococci, Malassezia, Staphylococcus aureus, or Candida albicans. The role of cutaneous and gut microbiome in psoriasis pathogenesis has recently been studied in both human and animal models. In this review, we try to evaluate various pathogenic mechanisms linking the microbiota and psoriasis. The literature research included peer-reviewed articles which included clinical trials, original reports, and scientific reviews. MEDLINE and PubMed databases were searched from January 1990 to March 2021, including the reference lists of articles meeting our criteria
Heavy flavor diffusion in weakly coupled N=4 Super Yang-Mills theory
We use perturbation theory to compute the diffusion coefficient of a heavy
quark or scalar moving in N=4 SU(N_c) Super Yang-Mills plasma to leading order
in the coupling and the ratio T/M<<1. The result is compared both to recent
strong coupling calculations in the same theory and to the corresponding weak
coupling result in QCD. Finally, we present a compact and simple formulation of
the Lagrangian of our theory, N=4 SYM coupled to a massive fundamental N=2
hypermultiplet, which is well-suited for weak coupling expansions.Comment: 22 pages, 4 figures; v3: error corrected in calculations, figures and
discussion modified accordingl
Symmetry Breaking in the Schr\"odinger Representation for Chern-Simons Theories
This paper discusses the phenomenon of spontaneous symmetry breaking in the
Schr\"odinger representation formulation of quantum field theory. The analysis
is presented for three-dimensional space-time abelian gauge theories with
either Maxwell, Maxwell-Chern-Simons, or pure Chern-Simons terms as the gauge
field contribution to the action, each of which leads to a different form of
mass generation for the gauge fields.Comment: 16pp, LaTeX , UCONN-94-
Gauge-Dependent Cosmological "Constant"
When the cosmological constant of spacetime is derived from the 5D
induced-matter theory of gravity, we show that a simple gauge transformation
changes it to a variable measure of the vacuum which is infinite at the big
bang and decays to an astrophysically-acceptable value at late epochs. We
outline implications of this for cosmology and galaxy formation.Comment: 14 pages, no figures, expanded version to be published in Class.
Quantum Gra
Four-dimensional topological Einstein-Maxwell gravity
The complete on-shell action of topological Einstein-Maxwell gravity in
four-dimensions is presented. It is shown explicitly how this theory for SU(2)
holonomy manifolds arises from four-dimensional Euclidean N=2 supergravity. The
twisted local BRST symmetries and twisted local Lorentz symmetries are given
and the action and stress tensor are shown to be BRST-exact. A set of
BRST-invariant topological operators is given. The vector and antisymmetric
tensor twisted supersymmetries and their algebra are also found.Comment: Published version. Expanded discussion of new results in the
introduction and some clarifying remarks added in later sections. 22 pages,
uses phyzz
Mersenne Primes, Polygonal Anomalies and String Theory Classification
It is pointed out that the Mersenne primes and associated
perfect numbers play a significant role in string
theory; this observation may suggest a classification of consistent string
theories.Comment: 10 pages LaTe
- …