698 research outputs found
Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models
Various new physics models predict a light CP-odd Higgs boson (labeled as
) and open up new decay modes for Z-boson, such as ,
and , which could be explored at the GigaZ option of
the ILC. In this work we investigate these rare decays in several new physics
models, namely the type-II two Higgs doublet model (type-II 2HDM), the
lepton-specific two Higgs doublet model (L2HDM), the nearly minimal
supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric
standard model (NMSSM). We find that in the parameter space allowed by current
experiments, the branching ratios can reach for
(), for and for , which
implies that the decays and may be accessible
at the GigaZ option. Moreover, since different models predict different
patterns of the branching ratios, the measurement of these rare decays at the
GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment
New results for the double beta decay of 76Ge are presented. They are
extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five
enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO.
The two neutrino accompanied double beta decay is evaluated for the first time
for all five detectors with a statistical significance of 47.7 kg y resulting
in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15)
(syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta
decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25)
[3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results
in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV).
No evidence for a Majoron emitting decay mode or for the neutrinoless mode is
observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third
International Conference ' Dark Matter in Astro and Particle Physics' -
DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into
our HEIDELBERG Non-Accelerator Particle Physics group home page:
http://www.mpi-hd.mpg.de/non_acc
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults
Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults.
Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Restoring brain function after stroke - bridging the gap between animals and humans
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke
Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev
Peer reviewe
Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states
Peer reviewe
Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.
Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed
- …
