96 research outputs found

    The mechanics of decompressive craniectomy: Personalized simulations

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordDecompressive craniectomy is a traditional but controversial surgical procedure that removes part of the skull to allow an injured and swollen brain to expand outward. Recent studies suggest that mechanical strain is associated with its undesired, high failure rates. However, the precise strain fields induced by the craniectomy are unknown. Here we create a personalized craniectomy model from magnetic resonance images to quantify the strains during a decompressive craniectomy using finite element analysis. We swell selected regions of the brain and remove part of the skull to allow the brain to bulge outward and release the intracranical swelling pressure. Our simulations reveal three potential failure mechanisms associated with the procedure: axonal stretch in the center of the bulge, axonal compression at the edge of the craniectomy, and axonal shear around the opening. Strikingly, for a swelling of only 10%, axonal strain, compression, and shear reach local maxima of up to 30%, and exceed the reported functional and morphological damage thresholds of 18% and 21%. Our simulations suggest that a collateral craniectomy with the skull opening at the side of swelling is less invasive than a contralateral craniectomy with the skull opening at the opposite side: It induces less deformation, less rotation, smaller strains, and a markedly smaller midline shift. Our computational craniectomy model can help quantify brain deformation, tissue strain, axonal stretch, and shear with the goal to identify high-risk regions for brain damage on a personalized basis. While computational modeling is beyond clinical practice in neurosurgery today, simulations of neurosurgical procedures have the potential to rationalize surgical process parameters including timing, location, and size, and provide standardized guidelines for clinical decision making and neurosurgical planning.This work was supported by the Wolfson/Royal Society Merit Award to Alain Goriely and by the National Institutes of Health grant U01 HL119578 to Ellen Kuhl

    Bulging brains

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Brain swelling is a serious condition associated with an accumulation of fluid inside the brain that can be caused by trauma, stroke, infection, or tumors. It increases the pressure inside the skull and reduces blood and oxygen supply. To relieve the intracranial pressure, neurosurgeons remove part of the skull and allow the swollen brain to bulge outward, a procedure known as decompressive craniectomy. Decompressive craniectomy has been preformed for more than a century; yet, its effects on the swollen brain remain poorly understood. Here we characterize the deformation, strain, and stretch in bulging brains using the nonlinear field theories of mechanics. Our study shows that even small swelling volumes of 28 to 56 ml induce maximum principal strains in excess of 30 %. For radially outward-pointing axons, we observe maximal normal stretches of 1.3 deep inside the bulge and maximal tangential stretches of 1.3 around the craniectomy edge. While the stretch magnitude varies with opening site and swelling region, our study suggests that the locations of maximum stretch are universally shared amongst all bulging brains. Our model has the potential to inform neurosurgeons and rationalize the shape and position of the skull opening, with the ultimate goal to reduce brain damage and improve the structural and functional outcomes of decompressive craniectomy in trauma patients.We thank Allan L. Reiss and his group for providing the MRI scans. This work was supported by the Timoshenko Scholar Award to Alain Goriely and by the Humboldt Research Award and the National Institutes of Health grant U01 HL119578 to Ellen Kuhl

    First principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets

    Full text link
    Recently it was demonstrated (Schattschneider et al., Nature 441 (2006), 486), that an analogue of the X-ray magnetic circular dichroism (XMCD) experiment can be performed with the transmission electron microscope (TEM). The new phenomenon has been named energy-loss magnetic chiral dichroism (EMCD). In this work we present a detailed ab initio study of the chiral dichroism in the Fe, Co and Ni transition elements. We discuss the methods used for the simulations together with the validity and accuracy of the treatment, which can, in principle, apply to any given crystalline specimen. The dependence of the dichroic signal on the sample thickness, accuracy of the detector position and the size of convergence and collection angles is calculated.Comment: 9 pages, 6 figures, submitted to Physical Review

    Inter-isotope determination of ultracold rubidium interactions from three high-precision experiments

    Get PDF
    Combining the measured binding energies of four of the most weakly bound rovibrational levels of the 87^{87}Rb2_2 molecule with the results of two other recent high-precision rubidium experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of 85^{85}Rb and 87^{87}Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. Using the consistent picture of the interactions that thus arises we are led to predictions for scattering lengths, clock shifts, Feshbach resonance fields and widths with an unprecedented level of accuracy. To demonstrate this, we predict two Feshbach resonances in mixed-spin scattering channels at easily accessible magnetic field strengths, which we expect to play a role in the damping of coherent spin oscillations

    Relativistic separable dual-space Gaussian Pseudopotentials from H to Rn

    Full text link
    We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole periodic table and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudopotential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real space grid, it is highly accurate and due to its analytic form it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations

    Dark resonances for ground state transfer of molecular quantum gases

    Full text link
    One possible way to produce ultracold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2> with the rovibrational ground state |v=0,J=0> of the singlet X1Σg+X^1\Sigma_g^+ ground state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2> by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.Comment: 7 pages, 4 figure

    Wei Hua's Four Parameter Potential Comments and Computation of Moleculer Constants \alpha_e and \omega_e x_e

    Full text link
    The value of adjustable parameter CC and the four-parameter potential U(r)=De[1exp[b(rre)]1Cexp[b(rre)]]2U(r) = D_{e}\left [ \frac{1-{exp}[-b(r-r_{e})]}{1-C{exp} [-b(r-r_{e})]} \right ]^{2} has been expressed in terms of molecular parameters and its significance has been brought out. The potential so constructed, with CC derived from the molecular parameters, has been applied to ten electronic states in addition to the states studied by Wei Hua. Average mean deviation has been found to be 3.47 as compared to 6.93, 6.95 and 9.72 obtained from Levine2, Varshni and Morse potentials, respectively. Also Dunham's method has been used to express rotation-vibration interaction constant (αe)(\alpha_{e}) and anharmonocity constant (ωexe)(\omega_{e}x_{e}) in terms of CC and other molecular constants. These relations have been employed to determine these quantities for 37 electronic states. For αe\alpha_{e}, the average mean deviation is 7.2% compared to 19.7% for Lippincott's potential which is known to be the best to predict the values. Average mean deviation for (ωexe)(\omega_{e}x_{e}) turns out to be 17.4% which is almost the same as found from Lippincott's potential function.Comment: 19 RevTex Pages, 1 Ps figure, submitted to J. Phys.

    Mechanosensing is critical for axon growth in the developing brain.

    Get PDF
    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.This work was supported by the German National Academic Foundation (scholarship to D.E.K.), Wellcome Trust and Cambridge Trusts (scholarships to A.J.T.), Winston Churchill Foundation of the United States (scholarship to S.K.F.), Herchel Smith Foundation (Research Studentship to S.K.F.), CNPq 307333/2013-2 (L.d.F.C.), NAP-PRP-USP and FAPESP 11/50761-2 (L.d.F.C.), UK EPSRC BT grant (J.G.), Wellcome Trust WT085314 and the European Research Council 322817 grants (C.E.H.); an Alexander von Humboldt Foundation Feodor Lynen Fellowship (K.F.), UK BBSRC grant BB/M021394/1 (K.F.), the Human Frontier Science Program Young Investigator Grant RGY0074/2013 (K.F.), the UK Medical Research Council Career Development Award G1100312/1 (K.F.) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R21HD080585 (K.F.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/nn.439

    A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter

    Get PDF
    A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition
    corecore