282 research outputs found

    Non-enzymatic roles of human RAD51 at stalled replication forks

    Get PDF
    The central recombination enzyme RAD51 has been implicated in replication fork processing and restart in response to replication stress. Here, we use a separation-of-function allele of RAD51 that retains DNA binding, but not D-loop activity, to reveal mechanistic aspects of RAD51’s roles in the response to replication stress. Here, we find that cells lacking RAD51’s enzymatic activity protect replication forks from MRE11-dependent degradation, as expected from previous studies. Unexpectedly, we find that RAD51’s strand exchange activity is not required to convert stalled forks to a form that can be degraded by DNA2. Such conversion was shown previously to require replication fork regression, supporting a model in which fork regression depends on a non-enzymatic function of RAD51. We also show RAD51 promotes replication restart by both strand exchange-dependent and strand exchange-independent mechanisms

    RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells.

    Get PDF
    The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors

    Cooperative Interaction between the MUC1-C Oncoprotein and the Rab31 GTPase in Estrogen Receptor-Positive Breast Cancer Cells

    Get PDF
    Rab31 is a member of the Ras superfamily of small GTPases that has been linked to poor outcomes in patients with breast cancer. The MUC1-C oncoprotein is aberrantly overexpressed in most human breast cancers and also confers a poor prognosis. The present results demonstrate that MUC1-C induces Rab31 expression in estrogen receptor positive (ER+) breast cancer cells. We show that MUC1-C forms a complex with estrogen receptor α (ERα) on the Rab31 promoter and activates Rab31 gene transcription in an estrogen-dependent manner. In turn, Rab31 contributes to the upregulation of MUC1-C abundance in breast cancer cells by attenuating degradation of MUC1-C in lysosomes. Expression of an inactive Rab31(S20N) mutant in nonmalignant breast epithelial cells confirmed that Rab31 regulates MUC1-C expression. The functional significance of the MUC1-C/Rab31 interaction is supported by the demonstration that Rab31 confers the formation of mammospheres by a MUC1-C-dependent mechanism. Analysis of microarray databases further showed that (i) Rab31 is expressed at higher levels in breast cancers as compared to that in normal breast tissues, (ii) MUC1+ and ER+ breast cancers have increased levels of Rab31 expression, and (iii) patients with Rab31-positive breast tumors have a significantly decreased ten-year overall survival as compared to those with Rab31-negative tumors. These findings indicate that MUC1-C and Rab31 function in an autoinductive loop that contributes to overexpression of MUC1-C in breast cancer cells

    DNA repair biomarkers XPF and phospho-MAPKAP kinase 2 correlate with clinical outcome in advanced head and neck cancer.

    Get PDF
    BackgroundInduction chemotherapy is a common therapeutic option for patients with locoregionally-advanced head and neck cancer (HNC), but it remains unclear which patients will benefit. In this study, we searched for biomarkers predicting the response of patients with locoregionally-advanced HNC to induction chemotherapy by evaluating the expression pattern of DNA repair proteins.MethodsExpression of a panel of DNA-repair proteins in formalin-fixed paraffin embedded specimens from a cohort of 37 HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation were analyzed using quantitative immunohistochemistry.ResultsWe found that XPF (an ERCC1 binding partner) and phospho-MAPKAP Kinase 2 (pMK2) are novel biomarkers for HNSCC patients undergoing platinum-based induction chemotherapy. Low XPF expression in HNSCC patients is associated with better response to induction chemoradiotherapy, while high XPF expression correlates with a worse response (p = 0.02). Furthermore, low pMK2 expression was found to correlate significantly with overall survival after induction plus chemoradiation therapy (p = 0.01), suggesting that pMK2 may relate to chemoradiation therapy.ConclusionsWe identified XPF and pMK2 as novel DNA-repair biomarkers for locoregionally-advanced HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation. Our study provides insights for the use of DNA repair biomarkers in personalized diagnostics strategies. Further validation in a larger cohort is indicated
    • …
    corecore