8 research outputs found

    Setting Mechanism of a CDHA Forming α-TCP Cement Modified with Sodium Phytate for Improved Injectability

    Get PDF
    A calcium deficient hydroxyapatite (CDHA) forming cement with a bimodal grain size distribution, composed of α-TCP and fine grained CDHA at a weight ratio of 9:1, was modified by the addition of sodium phytate (IP6) in variable amounts ranging from 0.25 to 2 wt.%, related to the powder content. The injectability of the cement paste was drastically increased by the IP6 addition, independent of the amount of added IP6. Additionally, the cement paste viscosity during the first minutes decreased. These effects could be clearly related to a slightly more negative zeta potential. Furthermore, IP6 was shown to strongly retard the setting reaction, as can be seen both in the calorimetry and X-ray diffraction measurements. In addition, octacalcium phosphate (OCP) was identified as a further setting product. All measurements were performed at 23 °C and 37 °C to assess the effect of temperature on the setting reaction for both clinical handling by the surgeon and the final hardening in the bone defect

    Melt electrowriting of poly(vinylidene fluoride-co-trifluoroethylene) : Melt electrowriting of poly(vinylidene fluoride-co-trifluoroethylene)

    Get PDF
    Poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-co-TrFE)) is an electroactive polymer with growing interest for applications in biomedical materials and flexible electronics. In this study, a solvent-free additive manufacturing technique called melt electrowriting (MEW) has been utilized to fabricate well-defined microperiodic structures of the copolymer (P(VDF-co-TrFE)). MEW of the highly viscous polymer melt was initiated using a heated collector at temperatures above 120 °C and required remarkably slow collector speeds below 100 mm min−1. The fiber surface morphology was affected by the collector speed and an increase in ÎČ-phase was observed for scaffolds compared to the unprocessed powder. Videography shows vibrations of the P(VDF-co-TrFE) jet previously unseen during MEW, probably due to repeated charge buildup and discharge. Furthermore, piezo-force microscopy measurements demonstrated the electromechanical response of MEW-fabricated fibers. This research therefore achieves the melt electrohydrodynamic processing of fibers with micrometer resolution into defined structures with an important electroactive polymer. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.Peer reviewe

    Injizierbare calciumphosphat-basierte Knochenersatzzemente

    No full text
    The human body has very good self-healing capabilities for numerous different injuries to a variety of different tissues. This includes the main human mechanical framework, the skeleton. The skeleton is limited in its healing without additional aid by medicine mostly by the defect size. When the defect reaches a size above 2.5 cm the regeneration of the defect ends up faulty. Here is where implants, defect fillers and other support approaches developed in medicine can help the body to heal the big defect still successfully. Usually sturdy implants (auto-/allo-/xenogenic) are implanted in the defect to bridge the distance, but for auto- and allogenic implants a suitable donor site must be found and for all sources the implant needs to be shaped into the defect specific site to ensure a perfect fit, the best support and good healing. This shaping is very time consuming and prone to error, already in the planning phase. The use of a material that is moldable and sets in the desired shape shortly after applying negates these disadvantages. Cementitious materials offer exactly this property by being in a pasty stage after the powder and liquid components have been mixed and the subsequently hardening to a solid implant. These properties also enable the extrusion, and therefore may also enable the injection, of the cement via a syringe in a minimal invasive approach. To enable a good injection of the cement modifications are necessary. This work aimed to modify commonly used calcium phosphate-based cement systems based on α-TCP (apatitic) and ÎČ-TCP (brushitic). These have been modified with sodium phytate and phytic acid, respectively. Additionally, the α-TCP system has been modified with sodium pyrophosphate, in a second study, to create a storable aqueous paste that can be activated once needed with a highly concentrated sodium orthophosphate solution. The powder phase of the α-TCP cement system consisted of nine parts α-TCP and one part CDHA. These were prepared to have different particle sizes and therefore enable a better powder flowability through the bimodal size distribution. α-TCP had a main particle size of 20 ÎŒm and CDHA of 2.6 ÎŒm. The modification with sodium phytate led to an adsorption of phytate ions on the surface of the α-TCP particles, where they started to form complexes with the Ca2+ ions in the solution. This adsorption had two effects. The first was to make the calcium ions unavailable, preventing supersaturation and ultimately the precipitation of CDHA what would lead to the cement hardening. The second was the increase of the absolute value of the surface charge, zeta potential, of the powder in the cement paste. Here a decrease from +3 mV to -40 mV could be measured. A strong value for the zeta potential leads to a higher repulsion of similarly charged particles and therefore prevents powder agglomeration and clogging on the nozzle during injection. These two modifications (bimodal particles size distribution and phytic acid) lead to a significant increase in the paste injectability. The unmodified paste was injectable for 30 % only, where all modified pastes were practically fully injectable ~90 % (the residual paste remained in the nozzle, while the syringe plunger already reached the end of the syringe). A very similar observation could be made for the ÎČ-TCP system. This system was modified with phytic acid. The zeta potential was decreased even stronger from -10 ± 1.5 mV to -71.5 ± 12 mV. The adsorption of the phytate ions and subsequent formation of chelate complexes with the newly dissolved Ca2+ ions also showed a retarding effect in the cements setting reaction. Where the unmodified cement was not measurable in the rheometer, as the reaction was faster than the measurement setup (~1.5 min), the modified cements showed a transition through the gel point between 3-6 min. This means the pastes stayed between 2 and 4 times longer viscous than without the modification. Like with the first cement system also here the effects of the phytate addition showed its beneficial influence in the injectability measurement. The unmodified cement was not injectable at all, due to the same issue already encountered at the rheology measurements, but all modified pastes were fully injectable for at least 5 min (lowest phytate concentration) and at least 10 min (all other concentrations) after the mixing of powder and liquid. The main goal of the last modification with sodium pyrophosphate was to create a paste that was stable in aqueous environment without setting until the activation takes place, but it should still show good injectability as this was the desired way of application after activation. Like before also the zeta potential changed after the addition of pyrophosphate. It could be lowered from -22 ± 2mV down to -61 to -68 ± 4mV (depending on the pyrophosphate concentration). The pastes were stored in airtight containers at room temperature and checked for their phase composition over 14 days. The unmodified paste showed a beginning phase conversion to hydroxyapatite between 7 and 14 days. All other pastes were still stable and unreacted. The pastes were activated with a high concentrated (30 wt%) sodium orthophosphate solution. After the activation the pastes were checked for their injectability and showed an increase from -57 ± 11% for the unmodified paste to -89 ± 3% (practically fully injectable as described earlier) for the best modified paste (PP005). It can be concluded that the goal of enabling full injection of conventional calcium phosphate bone cement systems was reached. Additional work produced a storage stable paste that still ensures full injectability. Subsequent work already used the storable paste and modified it with hyaluronic acid to create an ink for 3D extrusion printing. The first two cement systems have also already been investigated in cell culture for their influence on osteoblasts and osteoclasts. The next steps would have to go more into the direction of translation. Figuring out what properties still need to be checked and where the modification needs adjustment to enable a clinical use of the presented systems.Der menschliche Körper verfĂŒgt ĂŒber sehr gute SelbstheilungsfĂ€higkeiten fĂŒr zahlreiche verschiedene Verletzungen in unterschiedlichen Geweben. Dazu gehört auch das wichtigste mechanische GerĂŒst des Menschen, das Skelett. Das Skelett ist in seiner Heilung ohne zusĂ€tzliche Hilfe durch die Medizin vor allem durch die DefektgrĂ¶ĂŸe begrenzt. Erreicht der Defekt eine GrĂ¶ĂŸe von mehr als 2,5 cm, ist die Regeneration des Defekts nicht mehr gewĂ€hrleistet. Hier können Implantate, DefektfĂŒller und andere in der Medizin entwickelte UnterstĂŒtzungsansĂ€tze dem Körper helfen, den großen Defekt noch erfolgreich zu heilen. In der Regel werden stabile Implantate (auto-/allo-/xenogen) in den Defekt eingesetzt, um den Abstand zu ĂŒberbrĂŒcken. FĂŒr auto- und allogene Implantate muss jedoch eine geeignete Spenderstelle gefunden werden, und fĂŒr alle Quellen muss das Implantat in die defektspezifische Stelle geformt werden, um eine perfekte Passform, den besten Halt und eine gute Heilung zu gewĂ€hrleisten. Diese Formgebung ist sehr zeitaufwendig und fehleranfĂ€llig, schon in der Planungsphase. Die Verwendung eines Materials, das formbar ist und kurz nach dem Auftragen in der gewĂŒnschten Form aushĂ€rtet, negiert diese Nachteile. Zementartige Materialien bieten genau diese Eigenschaft, indem sie sich nach dem Vermischen von Pulver und flĂŒssigen Komponenten in einem pastösen Stadium befinden und anschließend zu einem festen Implantat aushĂ€rten. Diese Eigenschaften ermöglichen auch die Extrusion und damit möglicherweise auch die Injektion des Zements ĂŒber eine Spritze in einem minimalinvasiven Verfahren. Um eine gute Injektion des Zements zu ermöglichen, sind Modifikationen erforderlich. Ziel dieser Arbeit war es, die gĂ€ngigen Zementsysteme auf Kalziumphosphatbasis zu modifizieren, die auf α-TCP (apatitisch) und ÎČ-TCP (brushitisch) basieren. Diese wurden mit Natriumphytat bzw. PhytinsĂ€ure modifiziert. ZusĂ€tzlich wurde das α-TCP-System in einer zweiten Studie mit Natriumpyrophosphat modifiziert, um eine lagerfĂ€hige wasserbasierte Paste zu schaffen, die bei Bedarf mit einer hochkonzentrierten Natriumorthophosphatlösung aktiviert werden kann. Die Pulverphase des α-TCP-Zementsystems bestand aus neun Teilen α-TCP und einem Teil CDHA. Diese wurden so aufbereitet, dass sie unterschiedliche PartikelgrĂ¶ĂŸen aufweisen und somit eine bessere FließfĂ€higkeit des Pulvers durch die bimodale GrĂ¶ĂŸenverteilung ermöglichen. α-TCP hatte eine HauptpartikelgrĂ¶ĂŸe von 20 ÎŒm und CDHA von 2,6 ÎŒm. Die Modifizierung mit Natriumphytat fĂŒhrte zu einer Adsorption von Phytat-Ionen an der OberflĂ€che der α-TCP-Partikel, wo sie Komplexe mit den Ca2+-Ionen in der Lösung zu bilden begannen. Diese Adsorption hatte zwei Auswirkungen. Die erste bestand darin, dass die Calciumionen nicht mehr verfĂŒgbar waren, wodurch die ÜbersĂ€ttigung und letztlich die AusfĂ€llung von CDHA verhindert wurde, was zur ErhĂ€rtung des Zements gefĂŒhrt hĂ€tte. Der zweite Effekt war die Erhöhung des Betrags der OberflĂ€chenladung, des Zetapotenzials, des Pulvers in der Zementpaste. Hier konnte eine Abnahme von +3 mV auf -40 mV gemessen werden. Ein hoher Wert fĂŒr das Zetapotenzial fĂŒhrt zu einer stĂ€rkeren Abstoßung Ă€hnlich geladener Teilchen und verhindert somit die Agglomeration des Pulvers und das Verstopfen der KanĂŒle wĂ€hrend der Injektion. Diese beiden Modifikationen (bimodale PartikelgrĂ¶ĂŸenverteilung und PhytinsĂ€ure) fĂŒhren zu einer deutlichen Verbesserung der InjektionsfĂ€higkeit der Paste. Die unmodifizierte Paste war nur zu 30 % injizierbar, wĂ€hrend alle modifizierten Pasten praktisch vollstĂ€ndig injizierbar waren ~90 %(die Restpaste blieb in der KanĂŒle, wĂ€hrend der Spritzenkolben bereits das Ende der Spritze erreichte). Eine sehr Ă€hnliche Beobachtung konnte fĂŒr das ÎČ-TCP-System gemacht werden. Dieses System wurde mit PhytinsĂ€ure modifiziert. Das Zetapotenzial sank noch stĂ€rker von -10 ± 1,5 mV auf -71,5 ± 12mV. Die Adsorption der Phytat-Ionen und die anschließende Bildung von Chelatkomplexen mit den neu gelösten Ca2+-Ionen zeigten ebenfalls eine verzögernde Wirkung bei der Abbindereaktion des Zements. WĂ€hrend der unmodifizierte Zement im Rheometer nicht messbar war, da die Reaktion schneller verlief als der Messaufbau (~1,5 min), zeigten die modifizierten Zemente einen Übergang durch den Gelpunkt zwischen 3-6 min. Dies bedeutet, dass die Pasten zwischen 2 und 4 mal lĂ€nger viskos blieben als ohne die Modifikation. Wie beim ersten Zementsystem zeigte sich auch hier der positive Einfluss des Phytatzusatzes bei der Messung der InjektionsfĂ€higkeit. Der unmodifizierte Zement war ĂŒberhaupt nicht injizierbar, was auf das gleiche Problem zurĂŒckzufĂŒhren ist, das bereits bei den rheologischen Messungen aufgetreten ist, aber alle modifizierten Pasten waren mindestens 5 min (niedrigste Phytatkonzentration) und mindestens 10 min (alle anderen Konzentrationen) nach dem Mischen von Pulver und FlĂŒssigkeit vollstĂ€ndig injizierbar. Das Hauptziel der letzten Modifikation mit Natriumpyrophosphat bestand darin, eine Paste zu schaffen, die in wĂ€ssriger Umgebung stabil ist und bis zur Aktivierung nicht aushĂ€rtet, die aber dennoch eine gute InjektionsfĂ€higkeit aufweisen sollte, da dies die gewĂŒnschte Art der Anwendung nach der Aktivierung war. Wie zuvor Ă€nderte sich auch das Zetapotenzial nach der Zugabe von Pyrophosphat. Es konnte von -22 ± 2mV auf -61 bis -68 ± 4mV (abhĂ€ngig von der Pyrophosphatkonzentration) gesenkt werden. Die Pasten wurden in luftdichten BehĂ€ltern bei Raumtemperatur gelagert und ĂŒber 14 Tage auf ihre Phasenzusammensetzung untersucht. Die unmodifizierte Paste zeigte zwischen 7 und 14 Tagen eine beginnende Phasenumwandlung in Hydroxyapatit. Alle anderen Pasten waren noch stabil und nicht umgewandelt. Die Pasten wurden mit einer hochkonzentrierten (30 Gew.-%) Natriumorthophosphatlösung aktiviert. Nach der Aktivierung wurden die Pasten auf ihre InjektionsfĂ€higkeit geprĂŒft und zeigten einen Anstieg von -57 ± 11 % fĂŒr die unmodifizierte Paste auf -89 ± 3 % (praktisch vollstĂ€ndig injizierbar, wie zuvor beschrieben) fĂŒr die beste modifizierte Paste (PP005). Daraus lĂ€sst sich schließen, dass das Ziel, die vollstĂ€ndige Injektion herkömmlicher Kalziumphosphat-Knochenzementsysteme zu ermöglichen, erreicht wurde. Weitere Arbeiten fĂŒhrten zu einer lagerstabilen Paste, die dennoch eine vollstĂ€ndige InjektionsfĂ€higkeit gewĂ€hrleistet. In nachfolgenden Arbeiten wurde die lagerfĂ€hige Paste bereits verwendet und mit HyaluronsĂ€ure modifiziert, um eine Tinte fĂŒr den 3D-Extrusionsdruck herzustellen. Die ersten beiden Zementsysteme wurden auch bereits in Zellkulturen auf ihren Einfluss auf Osteoblasten und Osteoklasten untersucht. Die nĂ€chsten Schritte mĂŒssten mehr in Richtung Translation gehen. Es gilt herauszufinden, welche Eigenschaften noch ĂŒberprĂŒft werden mĂŒssen und wo die Modifikation angepasst werden muss, um einen klinischen Einsatz der vorgestellten Systeme zu ermöglichen

    Hydraulic reactivity and cement formation of baghdadite

    No full text
    In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3_{3}ZrSi2_{2}O9_{9}) was investigated. The material was synthesized by sintering a mixture of CaCO3_{3}, SiO2_{2}, and ZrO2_{2} and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3

    The Multiweek Thermal Stability of Medical-Grade Poly(Δ-caprolactone) During Melt Electrowriting

    No full text
    Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that places unique constraints on the processing of thermally degradable polymers. With a single nozzle, MEW operates at low throughput and in this study, medical-grade poly(Δ-caprolactone) (PCL) is heated for 25 d at three different temperatures (75, 85, and 95 °C), collecting daily samples. There is an initial increase in the fiber diameter and decrease in the jet speed over the first 5 d, then the MEW process remains stable for the 75 and 85 °C groups. When the collector speed is fixed to a value at least 10% above the jet speed, the diameter remains constant for 25 d at 75 °C and only increases with time for 85 and 95 °C. Fiber fusion at increased layer height is observed for 85 and 95 °C, while the surface morphology of single fibers remain similar for all temperatures. The properties of the prints are assessed with no observable changes in the degree of crystallinity or the Young's modulus, while the yield strength decreases in later phases only for 95 °C. After the initial 5-d period, the MEW processing of PCL at 75 °C is extraordinarily stable with overall fiber diameters averaging 13.5 ± 1.0 ”m over the entire 25-d period

    Phase Conversion of Ice‐Templated α‐Tricalcium Phosphate Scaffolds into Low‐Temperature Calcium Phosphates with Anisotropic Open Porosity

    No full text
    The current study aims to extend the material platform for anisotropically structured calcium phosphates to low-temperature phases such as calcium-deficient hydroxyapatite (CDHA) or the secondary phosphates monetite and brushite. This is achieved by the phase conversion of highly porous α-tricalcium phosphate (α-TCP) scaffolds fabricated by ice-templating into the aforementioned phases by hydrothermal treatment or incubation in phosphoric acid. Prior to these steps, α-TCP scaffolds are either sintered for 8 h at 1400 °C or remain in their original state. Both nonsintered and sintered α-TCP specimens are converted into CDHA by hydrothermal treatment, while a transformation into monetite and brushite is achieved by incubation in phosphoric acid. Hydrothermal treatment for 72 h at 175 °C increases the porosity in nonsintered samples from 85% to 88% and from 75% to 88% in the sintered ones. An increase in the specific surface area from (1.102 ± 0.005) to (9.17 ± 0.01) m2 g−1 and from (0.190 ± 0.004) to (2.809 ± 0.002) m2 g−1 due to the phase conversion is visible for both the nonsintered and sintered samples. Compressive strength of the nonsintered samples increases significantly from (0.76 ± 0.11) to (5.29 ± 0.94) MPa due to incubation in phosphoric acid

    Biological and mechanical performance of calcium phosphate cements modified with phytic acid

    No full text
    Abstract Calcium phosphate cements, primarily brushite cements, require the addition of setting retarders to ensure adequate processing time and processability. So far, citric acid has been the primary setting retarder used in this context. Due to the poor biocompatibility, it is crucial to explore alternative options for better processing. In recent years, the setting retarder phytic acid (IP6) has been increasingly investigated. This study investigates the biological behaviour of calcium phosphate cements with varying concentrations of IP6, in addition to their physical properties. Therefore cytocompatibility in vitro testing was performed using osteoblastic (MG-63) and osteoclastic (RAW 264.7 differentiated with RANKL) cells. We could demonstrate that the physical properties like the compressive strength of specimens formed with IP6 (brushite_IP6_5 = 11.2 MPa) were improved compared to the reference (brushite = 9.8 MPa). In osteoblast and osteoclast assays, IP6 exhibited significantly better cytocompatibility in terms of cell activity and cell number for brushite cements up to 11 times compared to the brushite reference. In contrast, the calcium-deficient hydroxyapatite (CDHA) cements produced similar results for IP6 (CDHA_IP6_0.25 = 27.0 MPa) when compared to their reference (CDHA = 21.2 MPa). Interestingly, lower doses of IP6 were found to be more effective than higher doses with up to 3 times higher. Additionally, IP6 significantly increased degradation in both passive and active resorption. For these reasons, IP6 is emerging as a strong new competitor to established setting retarders such as citric acid. These cements have potential applications in bone augmentation, the stabilisation of non-load bearing fractures (craniofacial), or the cementation of metal implants. Graphical Abstrac
    corecore