80 research outputs found
Trace Metal Exposure is Associated with Increased Exhaled Nitric Oxide in Asthmatic Children
Background Children with asthma experience increased susceptibility to airborne pollutants. Exposure to traffic and industrial activity have been positively associated with exacerbation of symptoms as well as emergency room visits and hospitalisations. The effect of trace metals contained in fine particulate matter (aerodynamic diameter 2.5 μm and lower, PM2.5) on acute health effects amongst asthmatic children has not been well investigated. The objective of this panel study in asthmatic children was to determine the association between personal daily exposure to ambient trace metals and airway inflammation, as measured by fractional exhaled nitric oxide (FeNO). Methods Daily concentrations of trace metals contained on PM2.5 were determined from personal samples (n = 217) collected from 70 asthmatic school aged children in Montreal, Canada, over ten consecutive days. FeNO was measured daily using standard techniques. Results A positive association was found between FeNO and children’s exposure to an indicator of vehicular non-tailpipe emissions (8.9 % increase for an increase in the interquartile range (IQR) in barium, 95 % confidence interval (CI): 2.8, 15.4) as well as exposure to an indicator of industrial emissions (7.6 % increase per IQR increase in vanadium, 95 % CI: 0.1, 15.8). Elevated FeNO was also suggested for other metals on the day after the exposure: 10.3 % increase per IQR increase in aluminium (95 % CI: 4.2, 16.6) and 7.5 % increase per IQR increase in iron (95 % CI: 1.5, 13.9) at a 1-day lag period. Conclusions Exposures to ambient PM2.5 containing trace metals that are markers of traffic and industrial-derived emissions were associated in asthmatic children with an enhanced FeNO response
Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma
Background:
Epidemiological studies have provided strong evidence that fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 μm) can exacerbate asthmatic symptoms in children. Pro-oxidant components of PM2.5 are capable of directly generating reactive oxygen species. Oxidative burden is used to describe the capacity of PM2.5 to generate reactive oxygen species in the lung.
Objective:
In this study we investigated the association between airway inflammation in asthmatic children and oxidative burden of PM2.5 personal exposure.
Methods:
Daily PM2.5 personal exposure samples (n = 249) of 62 asthmatic school-aged children in Montreal were collected over 10 consecutive days. The oxidative burden of PM2.5 samples was determined in vitro as the depletion of low-molecular-weight antioxidants (ascorbate and glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation was measured daily as fractional exhaled nitric oxide (FeNO).
Results:
A positive association was identified between FeNO and glutathione-related oxidative burden exposure in the previous 24 hr (6.0% increase per interquartile range change in glutathione). Glutathione-related oxidative burden was further found to be positively associated with FeNO over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroid use may reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use, 15.8%; irregular use, 3.8%), whereas mold (22.1%), dust (10.6%), or fur (13.1%) allergies may increase FeNO in children with versus children without these allergies (11.5%). No association was found between PM2.5 mass or ascorbate-related oxidative burden and FeNO levels.
Conclusions:
Exposure to PM2.5 with elevated glutathione-related oxidative burden was associated with increased FeNO
Associations between incident breast cancer and ambient concentrations of nitrogen dioxide from a national land use regression model in the Canadian National Breast Screening Study
Background: Air pollution has been classified as a human carcinogen based largely on epidemiological studies of lung cancer. Recent research suggests that exposure to ambient air pollution increases the risk of female breast cancer especially in premenopausal women. Methods: Our objective was to determine the association between residential exposure to ambient nitrogen dioxide (NO2) and newly diagnosed cases of invasive breast cancer in a cohort of 89,247 women enrolled in the Canadian National Breast Screening Study between 1980 and 1985.
Maternal Exposure to Aeroallergens and the Risk of Early Delivery.
BACKGROUND: Daily changes in aeroallergens during pregnancy could trigger early labor, but few investigations have evaluated this issue. This study aimed to investigate the association between exposure to aeroallergens during the week preceding birth and the risk of early delivery among preterm and term pregnancies. METHODS: We identified data on 225,234 singleton births that occurred in six large cities in the province of Ontario, Canada, from 2004 to 2011 (April to October) from a birth registry. We obtained daily counts of pollen grains and fungal spores from fixed-site monitoring stations in each city and assigned them to pregnancy period of each birth. Associations between exposure to aeroallergens in the preceding week and risk of delivery among preterm (<37 gestational weeks), early-term (37-38 weeks), and full-term (≥39 weeks) pregnancies were evaluated with Cox regression models, adjusting for maternal characteristics, meteorologic parameters, and air pollution concentrations, and pooled across the six cities. RESULTS: The risk of delivery increased by 3% per interquartile range width (IQRw = 22.1 grains/m) increase in weed pollen the day before birth among early-term (hazard ratio [HR] = 1.03; 95% confidence interval [CI]: 1.01, 1.05) and full-term pregnancies (HR = 1.03; 95% CI: 1.01, 1.04). Exposure to fungal spores cumulated over 0 to 2 lagged days was associated with increased risk of delivery among full-term pregnancies only (HR = 1.07; 95% CI: 1.01, 1.12). We observed no associations among preterm deliveries. CONCLUSIONS: Increasing concentrations of ambient weed pollen and fungal spores may be associated with earlier delivery among term births
Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma.
Rationale: Little is known regarding the impact of ambient ultrafine particles (UFPs; <0.1 μm) on childhood asthma development. Objectives: To examine the association between prenatal and early postnatal life exposure to UFPs and development of childhood asthma. Methods: A total of 160,641 singleton live births occurring in the City of Toronto, Canada between April 1, 2006, and March 31, 2012, were identified from a birth registry. Associations between exposure to ambient air pollutants and childhood asthma incidence (up to age 6) were estimated using random effects Cox proportional hazards models, adjusting for personal- and neighborhood-level covariates. We investigated both single-pollutant and multipollutant models accounting for coexposures to particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5) and NO2. Measurements and Main Results: We identified 27,062 children with incident asthma diagnosis during the follow-up. In adjusted models, second-trimester exposure to UFPs (hazard ratio per interquartile range increase, 1.09; 95% confidence interval, 1.06-1.12) was associated with asthma incidence. In models additionally adjusted for PM2.5 and nitrogen dioxide, UFPs exposure during the second trimester of pregnancy remained positively associated with childhood asthma incidence (hazard ratio per interquartile range increase, 1.05; 95% confidence interval, 1.01-1.09). Conclusions: This is the first study to evaluate the association between perinatal exposure to UFPs and the incidence of childhood asthma. Exposure to UFPs during a critical period of lung development was linked to the onset of asthma in children, independent of PM2.5 and NO2
Spatial variations in ambient ultrafine particle concentrations and the risk of incident prostate cancer: A case-control study
Background Diesel exhaust contains large numbers of ultrafine particles (UFPs, <0.1 µm) and is a recognized human carcinogen. However, epidemiological studies have yet to evaluate the relationship between UFPs and cancer incidence. Methods We conducted a case-control study of UFPs and incident prostate cancer in Montreal, Canada. Cases were identified from all main Francophone hospitals in the Montreal area between 2005 and 2009. Population controls were identified from provincial electoral lists of French Montreal residents and frequency-matched to cases using 5-year age gr
Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort
Background: Epidemiological studies have consistently demonstrated that exposure to fine particulate matter (PM
2.5
)is associated with increased risks of mortality. To a lesser extent, a series of studies suggest that living in greener areas is associated with reduced risks of mortality. Only a handful of studies have examined the interplay between PM
2.5
, greenness, and mortality. Methods: We investigated the role of residential greenness in modifying associations between long-term exposures to PM
2.5
and non-accidental and cardiovascular mortality in a national cohort of non-immigrant Canadian adults (i.e., the 2001 Canadian Census Health and Environment Cohort). Specifically, we examined associations between satellite-derived estimates of PM
2.5
exposure and mortality across quintiles of greenness measured within 500 m of individual's place of residence during 11 years of follow-up. We adjusted our survival models for many personal and contextual measures of socioeconomic position, and residential mobility data allowed us to characterize annual changes in exposures. Results: Our cohort included approximately 2.4 million individuals at baseline, 194,270 of whom died from non-accidental causes during follow-up. Adjustment for greenness attenuated the association between PM
2.5
and mortality (e.g., hazard ratios (HRs)and 95% confidence intervals (CIs)per interquartile range increase in PM
2.5
in models for non-accidental mortality decreased from 1.065 (95% CI: 1.056–1.075)to 1.041 (95% CI: 1.031–1.050)). The strength of observed associations between PM
2.5
and mortality decreased as greenness increased. This pattern persisted in models restricted to urban residents, in models that considered the combined oxidant capacity of ozone and nitrogen dioxide, and within neighbourhoods characterised by high or low deprivation. We found no increased risk of mortality associated with PM
2.5
among those living in the greenest areas. For example, the HR for cardiovascular mortality among individuals in the least green areas was 1.17 (95% CI: 1.12–1.23)compared to 1.01 (95% CI: 0.97–1.06)among those in the greenest areas. Conclusions: Studies that do not account for greenness may overstate the air pollution impacts on mortality. Residents in deprived neighbourhoods with high greenness benefitted by having more attenuated associations between PM
2.5
and mortality than those living in deprived areas with less greenness. The findings from this study extend our understanding of how living in greener areas may lead to improved health outcomes
Spatial variations in ambient ultrafine particle concentrations and risk of congenital heart defects.
BACKGROUND: Cardiovascular malformations account for nearly one-third of all congenital anomalies, making these the most common type of birth defects. Little is known regarding the influence of ambient ultrafine particles (<0.1 μm) (UFPs) on their occurrence. OBJECTIVE: This population-based study examined the association between prenatal exposure to UFPs and congenital heart defects (CHDs). METHODS: A total of 158,743 singleton live births occurring in the City of Toronto, Canada between April 1st 2006 and March 31st 2012 were identified from a birth registry. Associations between exposure to ambient UFPs between the 2nd and 8th week post conception when the foetal heart begins to form and CHDs identified at birth were estimated using random-effects logistic regression models, adjusting for personal- and neighbourhood-level covariates. We also investigated multi-pollutant models accounting for co-exposures to PM2.5, NO2 and O3. RESULTS: A total of 1468 CHDs were identified. In fully adjusted models, UFP exposures during weeks 2 to 8 of pregnancy were not associated with overall CHDs (Odds Ratio (OR) per interquartile (IQR) increase = 1.02, 95% CI: 0.96-1.08). When investigating subtypes of CHDs, UFP exposures were associated with ventricular septal defects (Odds Ratio (OR) per interquartile (IQR) increase = 1.13, 95% CI: 1.03-1.33), but not with atrial septal defect (Odds Ratio (OR) per interquartile (IQR) increase = 0.89, 95% CI: 0.74-1.06). CONCLUSION: This is the first study to evaluate the association between prenatal exposure to UFPs and the risk of CHDs. UFP exposures during a critical period of embryogenesis were associated with an increased risk of ventricular septal defect
Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations
- …