130,444 research outputs found
Symmetry of Nodal Solutions for Singularly Perturbed Elliptic Problems on a Ball
In [40], it was shown that the following singularly perturbed Dirichlet problem
\ep^2 \Delta u - u+ |u|^{p-1} u=0, \ \mbox{in} \ \Om,\]
\[ u=0 \ \mbox{on} \ \partial \Om
has a nodal solution u_\ep which has the least energy among all nodal solutions. Moreover, it is shown that u_\ep has exactly one local maximum point P_1^\ep with a positive value
and one local minimum point P_2^\ep with a negative value and, as \ep \to 0,
\varphi (P_1^\ep, P_2^\ep) \to \max_{ (P_1, P_2) \in \Om \times \Om } \varphi (P_1, P_2),
where \varphi (P_1, P_2)= \min (\frac{|P_1-P_2}{2}, d(P_1, \partial \Om), d(P_2, \partial \Om)). The following question naturally arises: where is the {\bf nodal surface} \{ u_\ep (x)=0 \}? In this paper, we give an answer in the case of the unit ball \Om=B_1 (0).
In particular, we show that for \epsilon sufficiently small, P_1^\ep, P_2^\ep and the origin must lie on a line. Without loss of generality, we may assume that this line is the x_1-axis.
Then u_\ep must be even in x_j, j=2, ..., N, and odd in x_1.
As a consequence, we show that \{ u_\ep (x)=0 \} = \{ x \in B_1 (0) | x_1=0 \}. Our proof
is divided into two steps:
first, by using the method of moving planes, we show that P_1^\ep, P_2^\ep and the origin must lie on the x_1-axis and u_\ep must be even in x_j, j=2, ..., N. Then,
using the Liapunov-Schmidt reduction method, we prove
the uniqueness of u_\ep (which implies the odd symmetry of u_\ep in x_1). Similar results are also proved for the problem with Neumann boundary conditions
Symmetric and Asymmetric Multiple Clusters In a Reaction-Diffusion System
We consider the Gierer-Meinhardt system in
the interval (-1,1) with Neumann boundary
conditions for small diffusion constant
of the activator and finite diffusion
constant of the inhibitor.
A cluster is a combination of several spikes
concentrating at the same point.
In this paper, we rigorously show the existence
of symmetric and asymmetric multiple clusters.
This result is new for systems and seems not
to occur for single equations.
We reduce the problem to the computation of two
matrices which depend on the coefficient of
the inhibitor as well as the number of different clusters and the number of spikes within each
cluster
On the stationary Cahn-Hilliard equation: Interior spike solutions
We study solutions of the stationary Cahn-Hilliard equation in a bounded smooth domain which have a spike in the interior. We show that a large class of interior points (the "nondegenerate peak" points) have the following property: there exist such solutions whose spike lies close to a given nondegenerate peak point. Our construction uses among others the methods of viscosity solution, weak convergence of measures and Liapunov-Schmidt reduction
Existence, classification and stability analysis of multiple-peaked solutions for the gierer-meinhardt system in R^1
We consider the Gierer-Meinhardt system in R^1.
where the exponents (p, q, r, s) satisfy
1< \frac{ qr}{(s+1)( p-1)} < \infty, 1 <p < +\infty,
and where \ep<<1, 0<D<\infty, \tau\geq 0,
D and \tau are constants which are independent of \ep.
We give a rigorous and unified approach to show that the existence and stability of N-peaked steady-states can be reduced to computing two
matrices in terms of the coefficients D, N, p, q, r, s. Moreover, it is shown that N-peaked steady-states are generated by exactly two types of peaks, provided their mutual distance is bounded away from zero
Existence and stability of multiple spot solutions for the gray-scott model in R^2
We study the Gray-Scott model in a bounded two dimensional domain and establish the existence and stability of {\bf symmetric} and {\bf asymmetric} multiple spotty patterns. The Green's function and its derivatives
together with two nonlocal eigenvalue problems
both play a major role in the analysis.
For symmetric spots, we establish a threshold behavior for stability:
If a certain inequality for the parameters holds
then we get stability, otherwise we get instability of multiple spot solutions.
For asymmetric spots, we show that they can be stable within a narrow parameter range
Existence and Stability of a Spike in the Central Component for a Consumer Chain Model
We study a three-component consumer chain model which is based on Schnakenberg type kinetics. In this model there is one consumer feeding on the producer and a second consumer feeding on the first consumer. This means that the first consumer (central component) plays a hybrid role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model suggested in \cite{gm,schn1} for which there is only one producer and one consumer. It is assumed that both the producer and second consumer diffuse much faster than the central component. We construct single spike solutions on an interval for which the profile of the first consumer is that of a spike. The profiles of the producer and the second consumer only vary on a much larger spatial scale due to faster diffusion of these components. It is shown that there exist two different single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude spike. We study the stability properties of these solutions in terms of the system parameters. We use a rigorous analysis for the linearized operator around single spike solutions based on nonlocal eigenvalue problems. The following result is established: If the time-relaxation constants for both producer and second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude spike solution is unstable. We also derive results on the stability of solutions when these two time-relaxation constants are small. We show a new effect: if the time-relaxation constant of the second consumer is very small, the large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has not been observed before for the stability of spike patterns. It seems that this behavior is not possible for two-component reaction-diffusion systems but that at least three components are required. Our main motivation to study this system is mathematical since the novel interaction of a spike in the central component with two other components results in new types of conditions for the existence and stability of a spike. This model is realistic if several assumptions are made: (i) cooperation of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer, and (iii) there is practically an unlimited pool of producer. The first assumption has been proven to be correct in many types of consumer groups or populations, the second assumption occurs if the central component has a much smaller mobility than the other two, the third assumption is realistic if the consumers do not feel the impact of the limited amount of producer due to its large quantity. This chain model plays a role in population biology, where consumer and producer are often called predator and prey. This system can also be used as a model for a sequence of irreversible autocatalytic reactions in a container which is in contact with a well-stirred reservoir
Asymmetric patterns for the Gierer-Meinhardt system
In this paper, we rigorously
prove the existence and stability of K-peaked asymmetric
patterns for the Gierer-Meinhardt system in a two dimensional domain
which are far from
spatial homogeneity.
We show that given any positive integers k_1,\,k_2 \geq 1
with k_1+k_2=K,
there are asymmetric patterns with
k_1 large peaks and k_2 small peaks.
Most of these asymmetric patterns are shown
to be unstable. However,
in a narrow range of parameters,
asymmetric patterns may be stable
(in contrast to the one-dimensional case)
Solutions for the Cahn-Hilliard Equation With Many Boundary Spike Layers
In this paper we
construct new classes of stationary solutions for the Cahn-Hilliard
equation
by a novel approach.
One of the results is as follows:
Given a positive integer K and a (not necessarily nondegenerate) local
minimum point of the mean curvature of the boundary then there are
boundary
K-spike solutions
whose peaks all approach this point.
This implies that for any smooth and bounded domain there
exist boundary K-spike solutions.
The central ingredient of our analysis is the novel derivation and
exploitation of a reduction of the energy to finite dimensions (Lemma 3.5),
where the variables are closely related to the peak loations
Stationary solutions for the Cahn-Hilliard equation
We study the Cahn-Hilliard equation in a bounded domain without any symmetry assumptions. We assume that the mean curvature of the boundary
has a nongenerate critical point. Then we show that there exists a spike-like stationary solution whose global maximum lies on the boundary. Our method is based on Lyapunov-Schmidt reduction and the Brouwer fixed-point theorem
Asymmetric spotty patterns for the Gray-Scott model in R^2
In this paper, we rigorously
prove the existence and stability of asymmetric spotty patterns for the Gray-Scott model in a bounded two dimensional domain.
We show that given any two positive integers k_1,\,k_2,
there are asymmetric solutions with k_1 large spots (type A) and k_2 small spots (type B).
We also give conditions for their location and calculate their heights.
Most of these asymmetric solutions are shown
to be unstable. However, in a narrow range of parameters,
asymmetric solutions may be stable
- ā¦