14,695 research outputs found

    Leading Chiral Corrections to the Nucleon Generalized Parton Distributions

    Full text link
    Using heavy baryon chiral perturbation theory we study the leading chiral corrections to the complete set of nucleon generalized parton distributions (GPDs). We compute the leading quark mass and momentum transfer dependence of the moments of nucleon GPDs through the nucleon off-forward twist-2 matrix elements. These results are then applied to get insight on the GPDs and their impact parameter space distributions.Comment: 26 pages, 2 figures; minor revisio

    Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems

    Full text link
    Decoherence-free subspaces (DFSs) provide a strategy for protecting the dynamics of an open system from decoherence induced by the system-environment interaction. So far, DFSs have been primarily studied in the framework of Markovian master equations. In this work, we study decoherence-free (DF) states in the general setting of a non-Markovian fermionic environment. We identify the DF states by diagonalizing the non-unitary evolution operator for a two-level fermionic system attached to an electron reservoir. By solving the exact master equation, we show that DF states can be stabilized dynamically.Comment: 11 pages, 3 figures. Any comments are welcom

    A statistical model to assess (allele-specific) associations between gene expression and epigenetic features using sequencing data

    Get PDF
    Sequencing techniques have been widely used to assess gene expression (i.e., RNA-seq) or the presence of epigenetic features (e.g., DNase-seq to identify open chromatin regions). In contrast to traditional microarray platforms, sequencing data are typically summarized in the form of discrete counts, and they are able to delineate allele-specific signals, which are not available from microarrays. The presence of epigenetic features are often associated with gene expression, both of which have been shown to be affected by DNA polymorphisms. However, joint models with the flexibility to assess interactions between gene expression, epigenetic features and DNA polymorphisms are currently lacking. In this paper, we develop a statistical model to assess the associations between gene expression and epigenetic features using sequencing data, while explicitly modeling the effects of DNA polymorphisms in either an allele-specific or nonallele-specific manner. We show that in doing so we provide the flexibility to detect associations between gene expression and epigenetic features, as well as conditional associations given DNA polymorphisms. We evaluate the performance of our method using simulations and apply our method to study the association between gene expression and the presence of DNase I Hypersensitive sites (DHSs) in HapMap individuals. Our model can be generalized to exploring the relationships between DNA polymorphisms and any two types of sequencing experiments, a useful feature as the variety of sequencing experiments continue to expand

    Electric Current Focusing Efficiency in Graphene Electric Lens

    Full text link
    In present work, we theoretically study the electron wave's focusing phenomenon in a single layered graphene pn junction(PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations [Science, 315, 1252 (2007)]. In addition, we find that for symmetric PNJ, 1/4 of total electric current radiated from source electrode can be collected by drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by present analytical method provide a general design rule for electric lens based on negative refractory index systems.Comment: 13 pages, 7 figure

    Thermodynamical description of the interacting new agegraphic dark energy

    Full text link
    We describe the thermodynamical interpretation of the interaction between new agegraphic dark energy and dark matter in a non-flat universe. When new agegraphic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. As soon as an interaction between them is taken into account, their thermodynamical interpretation changes by a stable thermal fluctuation. We obtain a relation between the interaction term of the dark components and this thermal fluctuation.Comment: 11 pages, accepted for publication in MPLA (2010

    Cosmological Models and Latest Observational Data

    Full text link
    In this note, we consider the observational constraints on some cosmological models by using the 307 Union type Ia supernovae (SNIa), the 32 calibrated Gamma-Ray Bursts (GRBs) at z>1.4z>1.4, the updated shift parameter RR from WMAP 5-year data (WMAP5), and the distance parameter AA of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies with the updated scalar spectral index nsn_s from WMAP5. The tighter constraints obtained here update the ones obtained previously in the literature.Comment: 10 pages, 5 figures, 1 table, revtex4; v2: discussions added, accepted by Eur. Phys. J. C; v3: published versio

    ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions

    Get PDF
    ZINBA (Zero-Inflated Negative Binomial Algorithm) identifies genomic regions enriched in a variety of ChIP-seq and related next-generation sequencing experiments (DNA-seq), calling both broad and narrow modes of enrichment across a range of signal-to-noise ratios. ZINBA models and accounts for factors that co-vary with background or experimental signal, such as G/C content, and identifies enrichment in genomes with complex local copy number variations. ZINBA provides a single unified framework for analyzing DNA-seq experiments in challenging genomic contexts

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde

    Quantum gates implementations in the separated ion-traps by fast laser pulses

    Full text link
    An approach is proposed to implement the universal quantum gates between the ions confined individually in the separated traps. Instead of the typical adiabatic operations, performed for manipulating the ion-ion coupling, here the switchable couplings between ions are implemented non-adiabatically by using the fast laser pulses. Consequently, the desirable quantum gates between the ions could be implemented by using only a series of laser pulses. The proposal may be conveniently generalized to the quantum computation with the scalable ion-traps.Comment: 10 pages, 3figure
    • …
    corecore